With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly pro...With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly provide controlling functions more than storing,processing or computing the measured data.This study develops an online fault detection configuration on the equipment side of air conditioning systems to realize these functions.Modbus communication is served to collect real-time operational data.The calculating programs are embedded to identify whether the measured signals exceed their limits or not,and to detect if sensor reading is frozen and other faults in relation to the operational performance are generated or not.The online fault detection configuration is tested on an actual variable-air-volume(VAV)air handling unit(AHU).The results show that the time ratio of fault detection exceeds 95.00%,which means that the configuration exhibits an acceptable fault detection effect.展开更多
A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy resi...A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.展开更多
Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicato...The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of ope...Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.展开更多
At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal c...At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.展开更多
Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea...Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea-surement based on a split air handling unit(SAHU)in a university building.Then,the statistical analysis was used to analyze the recycling feasibility and the impact factors of the condensate water production in 31 Chinese provincial capital cities to obtain the recycling potential map of the condensate water generated from a SAHU.Results showed that:(1)In the measurement,the amount of condensate water produced by a single split air conditioner was 1.6 kg from 12:40 to 13:40.Therefore,the daily output of condensate water of the air condi-tioner with the university operation schedule could reach 52.99 kg during the main air-conditioning season.(2)Among the 31 provincial capital cities in China,the largest condensate water outputs could be found in the Hot Summer and Warm Winter zone and the Hot Summer and Cold Winter zone,with an average monthly output of 1600 kg and 1100 kg,respectively.(3)Regression analysis showed that the dry-bulb temperature and dew point temperature of outdoor air had the highest positive and significant influence on condensate water production.The objective of this study is to provide theoretical guidance for the design and energy conservation evaluation of the feasibility of SAHU condensate water recycling in universities.展开更多
Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on f...Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.展开更多
As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dyn...As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dynamic model of the AHUs with unknown strength of the humidity source is considered,and an improved backstepping controller is proposed to realize the tracking objective of the indoor temperature,relative humidity and carbon dioxide concentration.Firstly,the original system is represented in simplified state space form,and then the state transformation is introduced with a gain to overcome the difficulty caused by the unknown strength of the humidity source.Then,the improved backstepping controller is designed in a step-by-step way.Moreover,the stability of the closed-loop system is analyzed in detail.Finally,we consider the case that the AHUs work in summer of Jinan,China,as an example.The simulation results show the effectiveness of the controller.Meanwhile,the performance of the improved backstepping controller are compared with that of the decoupled sliding mode and PID controllers.展开更多
With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30...With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.展开更多
基金Research Project of China Ship Development and Design Center,Wuhan,China。
文摘With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly provide controlling functions more than storing,processing or computing the measured data.This study develops an online fault detection configuration on the equipment side of air conditioning systems to realize these functions.Modbus communication is served to collect real-time operational data.The calculating programs are embedded to identify whether the measured signals exceed their limits or not,and to detect if sensor reading is frozen and other faults in relation to the operational performance are generated or not.The online fault detection configuration is tested on an actual variable-air-volume(VAV)air handling unit(AHU).The results show that the time ratio of fault detection exceeds 95.00%,which means that the configuration exhibits an acceptable fault detection effect.
基金National Natural Science Foundation of China(No.31101085)
文摘A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
文摘The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金supported by the Opening Fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China(Chongqing University)(No.LLEUTS-202305)the National Natural Science Foundation of China(No.51906181)+4 种基金the Youth Innovation Technology Project of Higher School in Shandong Province(No.2022KJ204)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(No.2023D0504,No.2023D0501)the Opening Fund of State Key Laboratory of Green Building in Western China(No.LSKF202316)Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S202210488076)the Wuhan University of Science and Technology Postgraduate Innovation and Entrepreneurship Fund(JCX2023026).
文摘Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.
基金supported by the China Scholarship Council(Grant Number 202208120025).
文摘At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.
基金funded by Sichuan Agriculture University,and is supported in part by the scholarship from China Scholarship Council(CSC)under the Grant CSC 202006915024.
文摘Recycling the condensate water of the air conditioner could be explored as an alternative water source to con-tribute to building the green campus.This paper explored the condensate water production through actual mea-surement based on a split air handling unit(SAHU)in a university building.Then,the statistical analysis was used to analyze the recycling feasibility and the impact factors of the condensate water production in 31 Chinese provincial capital cities to obtain the recycling potential map of the condensate water generated from a SAHU.Results showed that:(1)In the measurement,the amount of condensate water produced by a single split air conditioner was 1.6 kg from 12:40 to 13:40.Therefore,the daily output of condensate water of the air condi-tioner with the university operation schedule could reach 52.99 kg during the main air-conditioning season.(2)Among the 31 provincial capital cities in China,the largest condensate water outputs could be found in the Hot Summer and Warm Winter zone and the Hot Summer and Cold Winter zone,with an average monthly output of 1600 kg and 1100 kg,respectively.(3)Regression analysis showed that the dry-bulb temperature and dew point temperature of outdoor air had the highest positive and significant influence on condensate water production.The objective of this study is to provide theoretical guidance for the design and energy conservation evaluation of the feasibility of SAHU condensate water recycling in universities.
文摘Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.
基金This study is partly supported by the National Natural Science Foundation of China(61903226,62076150,62173216)the Taishan Scholar Project of Shandong Province(TSQN201812092)+1 种基金the Key Research and Development Program of Shandong Province(2021CXGC011205,2019GGX101072)the Youth Innovation Technology Project of Higher School in Shandong Province(2019KJN005).
文摘As an important component of the heating,ventilating and air conditioning(HVAC)systems,air handling units(AHUs)are responsible for regulating indoor temperature and humidity.In this paper,a multivariable nonlinear dynamic model of the AHUs with unknown strength of the humidity source is considered,and an improved backstepping controller is proposed to realize the tracking objective of the indoor temperature,relative humidity and carbon dioxide concentration.Firstly,the original system is represented in simplified state space form,and then the state transformation is introduced with a gain to overcome the difficulty caused by the unknown strength of the humidity source.Then,the improved backstepping controller is designed in a step-by-step way.Moreover,the stability of the closed-loop system is analyzed in detail.Finally,we consider the case that the AHUs work in summer of Jinan,China,as an example.The simulation results show the effectiveness of the controller.Meanwhile,the performance of the improved backstepping controller are compared with that of the decoupled sliding mode and PID controllers.
基金supported by National Key Technology Support Program (No. 2013BAA01B00)National Natural Science Foundation of China (No. 51361130152, No. 51577028)
文摘With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.