Study of Air Quality Objectives(AQOs)and long-term changes of air pollution plays a decisive role in formulating and refining pollution control strategies.In this study,10-year variations of six major air pollutants w...Study of Air Quality Objectives(AQOs)and long-term changes of air pollution plays a decisive role in formulating and refining pollution control strategies.In this study,10-year variations of six major air pollutants were analyzed at seven monitoring sites in Hong Kong region.The continuous decrease of annual averaged concentrations of NO_(2),SO_(2),CO,PM_(2.5)and PM_(10)and numbers of days with severe pollution conditions validated the efficiency of the series of air pollution control schemes implemented by the Hong Kong region government.However,there is still a big gap to meet the ultimate targets described by the World Health Organization.Besides,the concentration of O_(3)at roadside and urban stations increased by 135%±25%and 37%±18%from 2011 to 2020,respectively,meanwhile the highest 8 hr averaged O_(3)concentration was observed as 294μg/m^(3)at background station in 2020,which pointed out the increasing ozone pollution in Hong Kong region.There was a great decrease in the annual times of air quality health index(AQHI)laying in“high”,“very high”and“serious”categories from 2011 to 2020 with the decrease rate of 89.70%,91.30%and 89.74%at roadside stations,and 79.03%,95.98%and 72.73%at urban stations,respectively.Nevertheless,the number of days categorized as“high”or above at roadside station was twice more than that in the urban station during the past ten years.Thus,more policies and attentions should be given to the roadside air quality and its adverse health effect to pedestrians on street.展开更多
Guangzhou is the capital and largest city(land area:7287 km2)of Guangdong province in South China.The air quality in Guangzhou typically worsens in November due to unfavorable meteorological conditions for pollutan...Guangzhou is the capital and largest city(land area:7287 km2)of Guangdong province in South China.The air quality in Guangzhou typically worsens in November due to unfavorable meteorological conditions for pollutant dispersion.During the Guangzhou Asian Games in November 2010,the Guangzhou government carried out a number of emission control measures that significantly improved the air quality.In this paper,we estimated the acute health outcome changes related to the air quality improvement during the 2010 Guangzhou Asian Games using a next-generation,fully-integrated assessment system for air quality and health benefits.This advanced system generates air quality data by fusing model and monitoring data instead of using monitoring data alone,which provides more reliable results.The air quality estimates retain the spatial distribution of model results while calibrating the value with observations.The results show that the mean PM2.5concentration in November 2010 decreased by 3.5μg/m^3 compared to that in 2009 due to the emission control measures.From the analysis,we estimate that the air quality improvement avoided 106 premature deaths,1869 cases of hospital admission,and 20,026 cases of outpatient visits.The overall cost benefit of the improved air quality is estimated to be 165 million CNY,with the avoided premature death contributing 90%of this figure.The research demonstrates that Ben MAP-CE is capable of assessing the health and cost benefits of air pollution control for sound policy making.展开更多
基金supported by the Research Grants Council of Hong Kong Government(Project No.T24/504/17 and T31-603/21-N)he Environment and Conservation Fund of Hong Kong Governmentt(Project No.ECF 63/2019).
文摘Study of Air Quality Objectives(AQOs)and long-term changes of air pollution plays a decisive role in formulating and refining pollution control strategies.In this study,10-year variations of six major air pollutants were analyzed at seven monitoring sites in Hong Kong region.The continuous decrease of annual averaged concentrations of NO_(2),SO_(2),CO,PM_(2.5)and PM_(10)and numbers of days with severe pollution conditions validated the efficiency of the series of air pollution control schemes implemented by the Hong Kong region government.However,there is still a big gap to meet the ultimate targets described by the World Health Organization.Besides,the concentration of O_(3)at roadside and urban stations increased by 135%±25%and 37%±18%from 2011 to 2020,respectively,meanwhile the highest 8 hr averaged O_(3)concentration was observed as 294μg/m^(3)at background station in 2020,which pointed out the increasing ozone pollution in Hong Kong region.There was a great decrease in the annual times of air quality health index(AQHI)laying in“high”,“very high”and“serious”categories from 2011 to 2020 with the decrease rate of 89.70%,91.30%and 89.74%at roadside stations,and 79.03%,95.98%and 72.73%at urban stations,respectively.Nevertheless,the number of days categorized as“high”or above at roadside station was twice more than that in the urban station during the past ten years.Thus,more policies and attentions should be given to the roadside air quality and its adverse health effect to pedestrians on street.
基金provided by the US Environmental Protection Agency(No.5-312-0212979-51786L)the Guangzhou EnvironmentalProtection Bureau(No.x2hj B2150020)+3 种基金the project of an integrated modeling and filed observational verification on the deposition of typical industrial point-source mercury emissions in the Pearl River Deltsupported by the funding of the Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(No.2011A060901011)the project of Atmospheric Haze Collaboration Control Technology Design from the Chinese Academy of Sciences(No.XDB05030400)the National Environmental Protection Public Welfare Industry Targeted Research Foundation of China(No.201409019)
文摘Guangzhou is the capital and largest city(land area:7287 km2)of Guangdong province in South China.The air quality in Guangzhou typically worsens in November due to unfavorable meteorological conditions for pollutant dispersion.During the Guangzhou Asian Games in November 2010,the Guangzhou government carried out a number of emission control measures that significantly improved the air quality.In this paper,we estimated the acute health outcome changes related to the air quality improvement during the 2010 Guangzhou Asian Games using a next-generation,fully-integrated assessment system for air quality and health benefits.This advanced system generates air quality data by fusing model and monitoring data instead of using monitoring data alone,which provides more reliable results.The air quality estimates retain the spatial distribution of model results while calibrating the value with observations.The results show that the mean PM2.5concentration in November 2010 decreased by 3.5μg/m^3 compared to that in 2009 due to the emission control measures.From the analysis,we estimate that the air quality improvement avoided 106 premature deaths,1869 cases of hospital admission,and 20,026 cases of outpatient visits.The overall cost benefit of the improved air quality is estimated to be 165 million CNY,with the avoided premature death contributing 90%of this figure.The research demonstrates that Ben MAP-CE is capable of assessing the health and cost benefits of air pollution control for sound policy making.