Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) pro...Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) problem. Considering that the combat information conditions are uncertain intervals, the payoff function of the game for multiple fighters suppressing the IADS is modeled.Using the operation rules for interval numbers and the possibility degree, an improved chaotic particle swarm optimization(CPSO)is designed to solve the proposed model so as to obtain the optimal game solution. Comparison simulations are performed to analyze the influence of the weapons consumption and the distances of non-escaped zone and jamming on air combat result. Simulation results suggest that Nash equilibrium is achieved and verify the effectiveness of the proposed method.展开更多
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys...As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.展开更多
Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is n...Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is not suitable for measuring straightness of an air-bearing guide with a long air-bearing bush or a precision straight guide with a long slide-carriage, because the air-bearing bush and the slidecarriage are actually taken as a big bridgeboard bigger than the length of the bridgeboard with the reflector, which is about 1/4-1/2 of total length of the measured guide. If straightness is measured according to the traditional method, only a few points are sampled so that the guide straightness can not be evaluated fully or accurately. In order to solve the problem, an alterable measuring interval method is proposed for straightness measurement based on analyzing the mutual relations and effects among the tilting angle of the reflector, the length of the bridgeboard, the measuring interval and the straightness of the guide. A straightness calculation model is also developed using the method, and the errors stemming from the method proposed are introduced in brief. A precision air-bearing guide with a long air-bearing bush is measured and evaluated using the method proposed, and the actual measurement and evaluation results prove that the method is correct in theory and practical in operation. The method proposed gives an effective and flexible solution to the straightness measurement of the precision guide with long slide-carriage or air-bearing bush in application. It is an extension of the traditional optical-electronic autocollimation method for straightness measurement.展开更多
A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. T...A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.展开更多
A novel real-time autonomous Interval Management System(IMS)is proposed to automate interval management,which considers the effect of wind uncertainty using the Dynamic Fuzzy Velocity Decision(DFVD)algorithm.The membe...A novel real-time autonomous Interval Management System(IMS)is proposed to automate interval management,which considers the effect of wind uncertainty using the Dynamic Fuzzy Velocity Decision(DFVD)algorithm.The membership function can be generated dynamically based on the True Air Speed(TAS)limitation changes in real time and the interval criterion of the adjacent aircraft,and combined with human cognition to formulate fuzzy rules for speed adjusting decision-making.Three groups of experiments were conducted during the en-route descent stage to validate the proposed IMS and DFVD performances,and to analyze the impact factors of the algorithm.The verification experimental results show that compared with actual flight status data under controllers’command,the IMS reduces the descent time by approaching 30%with favorable wind uncertainty suppression performance.Sensitivity analysis shows that the ability improvement of DFVD is mainly affected by the boundary value of the membership function.Additionally,the dynamic generation of the velocity membership function has greater advantages than the static method in terms of safety and stability.Through the analysis of influencing factors,we found that the interval criterion and aircraft category have no significant effect on the capability of IMS.In a higher initial altitude scenario,the initial interval should be appropriately increased to enhance safety and efficiency during the descent process.This prototype system could evolve into a realtime Flight-deck Interval Management(FIM)tool in the future.展开更多
基金supported by the National Natural Science Foundation of China(616034116057317250875132)
文摘Model combat information conditions are always uncertain and varied, the uncertain interval theory is therefore introduced into the research of multiple fighters suppressing the integrated air defense system(IADS) problem. Considering that the combat information conditions are uncertain intervals, the payoff function of the game for multiple fighters suppressing the IADS is modeled.Using the operation rules for interval numbers and the possibility degree, an improved chaotic particle swarm optimization(CPSO)is designed to solve the proposed model so as to obtain the optimal game solution. Comparison simulations are performed to analyze the influence of the weapons consumption and the distances of non-escaped zone and jamming on air combat result. Simulation results suggest that Nash equilibrium is achieved and verify the effectiveness of the proposed method.
基金supported by National Key Scientific Instrument and Equipment Development Project of China,Grant Nos.2013YQ220643the National 863 Program of China,Grant Nos.2014AA06A503.
文摘As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.
基金This project is supported by National Natural Science Foundation of China (No.50175081).
文摘Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is not suitable for measuring straightness of an air-bearing guide with a long air-bearing bush or a precision straight guide with a long slide-carriage, because the air-bearing bush and the slidecarriage are actually taken as a big bridgeboard bigger than the length of the bridgeboard with the reflector, which is about 1/4-1/2 of total length of the measured guide. If straightness is measured according to the traditional method, only a few points are sampled so that the guide straightness can not be evaluated fully or accurately. In order to solve the problem, an alterable measuring interval method is proposed for straightness measurement based on analyzing the mutual relations and effects among the tilting angle of the reflector, the length of the bridgeboard, the measuring interval and the straightness of the guide. A straightness calculation model is also developed using the method, and the errors stemming from the method proposed are introduced in brief. A precision air-bearing guide with a long air-bearing bush is measured and evaluated using the method proposed, and the actual measurement and evaluation results prove that the method is correct in theory and practical in operation. The method proposed gives an effective and flexible solution to the straightness measurement of the precision guide with long slide-carriage or air-bearing bush in application. It is an extension of the traditional optical-electronic autocollimation method for straightness measurement.
基金supported by the National Basic Research Program under Grand No.2006CB400506
文摘A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.
文摘A novel real-time autonomous Interval Management System(IMS)is proposed to automate interval management,which considers the effect of wind uncertainty using the Dynamic Fuzzy Velocity Decision(DFVD)algorithm.The membership function can be generated dynamically based on the True Air Speed(TAS)limitation changes in real time and the interval criterion of the adjacent aircraft,and combined with human cognition to formulate fuzzy rules for speed adjusting decision-making.Three groups of experiments were conducted during the en-route descent stage to validate the proposed IMS and DFVD performances,and to analyze the impact factors of the algorithm.The verification experimental results show that compared with actual flight status data under controllers’command,the IMS reduces the descent time by approaching 30%with favorable wind uncertainty suppression performance.Sensitivity analysis shows that the ability improvement of DFVD is mainly affected by the boundary value of the membership function.Additionally,the dynamic generation of the velocity membership function has greater advantages than the static method in terms of safety and stability.Through the analysis of influencing factors,we found that the interval criterion and aircraft category have no significant effect on the capability of IMS.In a higher initial altitude scenario,the initial interval should be appropriately increased to enhance safety and efficiency during the descent process.This prototype system could evolve into a realtime Flight-deck Interval Management(FIM)tool in the future.