Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band...Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm^-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interracial water molecule is tilted around 33°from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interracial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orient, ational motion of a liquid interface by Wei et al. (Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.展开更多
The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute or...The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.展开更多
Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyl- trimethylammonium bromide (DTAB) at the air/water in...Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyl- trimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems, the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. The results reveal that the surface activity of C12C2C12 surfactant is higher than DTAB surfactant.展开更多
When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the inter...When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.展开更多
In situ photochromic process in the monolayer of a photochromic spiropyran derivative without long alkyl chain, was investigated. The photochromism at the air/water interface under different surface pressures was s...In situ photochromic process in the monolayer of a photochromic spiropyran derivative without long alkyl chain, was investigated. The photochromism at the air/water interface under different surface pressures was studied by surface pressure area isotherms, surface pressure time curves, area time curves and Brewster angle microscopy. Both forms of the compound were found to form monolayers at the air/water interface although it does not have long alkyl chain. A large area expansion in the monolayer corresponding to a zero th order reaction was found at the initial stage of the UV light irradiation. A series of dynamic investigations revealed that at high pressure after phase transition in the monolayer, the surface pressure changes greatly under alternative irradiation of UV and visible light. An obvious morphological change accompanying with the photochromism was observed in situ .展开更多
The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s...The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.展开更多
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future...The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.展开更多
In this investigation, the adsorption of benzonitrile at the air/water interface was addressed using vibrational sum-frequency spectroscopy. Using ppp and ssp polarization combinations, the authors detected the symmet...In this investigation, the adsorption of benzonitrile at the air/water interface was addressed using vibrational sum-frequency spectroscopy. Using ppp and ssp polarization combinations, the authors detected the symmetric stretching mode of the cyano (CN) group and calculated the orientation of benzonitrile at the interface. In addition, the adsorption isotherm was determined in terms of the hyperpolarizability element by varying the bulk benzonitrile concentration. The adsorption energy was obtained from fitting this isotherm. This work will add to our understanding of chemical processes relevant to retention, degradation, and photolysis of benzonitriles in the environment.展开更多
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kep...The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.展开更多
The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structu...The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.展开更多
High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provid...High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design.However,sometimes such analyses suffer inaccuracies since the air–water interface effects,especially in the transition phase,are not fully accounted for.Hence,understanding the behaviour at the transition speed is of fundamental importance for the designer.The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz.,knuckles,chines and transom,with resultant spray generation.In such cases,the application of potential theory at high speeds introduces limitations.This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects,with validations through experiments to compare the drag,dynamic trim and wetted surface area.The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects.The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests.It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids.Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag,and their ability to capture the spray resulting from the air–water interaction.The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface,drag at the pre-planing and full planing range and dynamic trim angles.展开更多
This study on the sectional and vertical distribution of dissolved oxygen (DO) and the O_2 fluxes acrossthe sea-air interface in East China Sea (ESC) waters shows that the waters were in steady state and thatthe diffe...This study on the sectional and vertical distribution of dissolved oxygen (DO) and the O_2 fluxes acrossthe sea-air interface in East China Sea (ESC) waters shows that the waters were in steady state and thatthe difference of DO was great in upper and bottom waters in Apr. 1994; but that seawater mixingwas strong and the difference of DO was small in upper and bettom waters in Oct. 1994. The above con-dusions were specially obvious in continental shelf waters under 100m. The DO maximum in subsurfacelayer waters appeared only at several stations and in general the DO in the waters decreased with depth.The horizontal distributions of O_2 fluxes across the sea-air interface appeared in stripes in Leg 9404 whenmost regions covend were supersaturated with O_2. seawater to air flux wn large, and that on section No.1was 1.594 L/m^2·d. The horizontal distribution of O_2 fluxes across the sea-air interface appeared lumpy inLeg 9410, when most regions covered were unsaturated with O_2. O_2 was dissolved from air to seawater,and the fluxes were 0.819 L/m^2·d on section No. 1 in Leg 9310, 0.219 L/m^2·d in Leg 9410. The mainreasons for DO change in surface layer seawater were the mixture of upper and bottom layer water, and theexchange of O_2 across the sea-air interface. The variation of DO by biological activity was only 20% of totalchange of DO.展开更多
Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is...Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is equal to 1750. The substitution extent, defined by the number of substituting units in a chain, for the four FPVA samples was in the range of 0.5-5 perfluorooctanoyl groups per chain. The FPVA samples with the highest substitution extent still had good solubility in water. It was shown by experimental measurement at 30.0 +/- 0.1 degreesC that the surface tension of the aqueous solution of the highest substituted FPVA decreased to 16.6 mN/m at a higher concentration, e.g. about 0.1 g/mL. Obviously, macromolecules of FPVA exhibit a very strong tendency to adsorb at the air-water interface, because the hydrophobic perfluorooctanoyl groups in FPVA have a very high surface activity as they are in small molecular fluorinated surfactants. The chain conformation of such a model polymer adsorbed on the air-water interface was also discussed.展开更多
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc...Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.展开更多
Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitu...Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.展开更多
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop...The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.展开更多
Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials...Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed.展开更多
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma...Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.展开更多
Highly active and durable bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) play a pivotal role in overall water splitting. Herein, we demonstrate the construction...Highly active and durable bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) play a pivotal role in overall water splitting. Herein, we demonstrate the construction of interface-strengthened CoP nanosheet array with Co2P nanoparticles as such an electrocatalyst through a facile hydrothermal reaction and the subsequent phosphorization process. The twodimensional (2D) nanosheets with thickness of^55 nm expose a great number of active sites. The surface chemical state indicates that the strongly coupled CoP/Co2P electrocatalysts can adsorb or generate more targeted intermediates (e.g. OH- or OOH*) for both HER/OER. As a result, the CoP/Co2P electrocatalysts exhibit small overpotentials of 68 and 256 mV to drive 10 mA cm^-2 for HER and OER, respectively, outperforming most of the recently reported Co-based electrocatalysts. Furthermore, an alkaline electrolyzer assembled by using CoP/Co2P as both cathode and anode can achieve a current density of 10 mA cm^-2 at a low voltage of 1.57 V and work continuously for over 58 h. This work provides a feasible structural design for transition metal phosphides electrocatalysts with efficient and stable overall water splitting.展开更多
基金This work was supported by Chines Academy of Scieuces(No.CMS-cx200305),National Natural Science Foundation of China(NSFC No.20425309,No.20573117)and Chinese Ministry of Science and Technology (M0ST No.G1999075305).
文摘Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm^-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interracial water molecule is tilted around 33°from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interracial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orient, ational motion of a liquid interface by Wei et al. (Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.
基金Ⅵ. ACKNOWLEDGMENTS Hong-fei Wang thanks the support by the National Natural Science Foundation of China (No.20373076, No.20425309, and No.20533070) and the Ministry of Science and Technology of China (No.2007CB815205). Zhi-feng Cui thanks the support by the Natural Science Foundation of China (No.10674002) and the Natural Science Foundation of Anhui Province (No.ZD2007001-1).
文摘The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.
基金The authors gratefully acknowledge financial support from Key Technologies R&D Program Foundation of China(02BA312B07)the National Natural Science Foundation of China(No.20303011)Natural Science Foundation of Shandong Province(Y 2001 B08).
文摘Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyl- trimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems, the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. The results reveal that the surface activity of C12C2C12 surfactant is higher than DTAB surfactant.
文摘When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.
文摘In situ photochromic process in the monolayer of a photochromic spiropyran derivative without long alkyl chain, was investigated. The photochromism at the air/water interface under different surface pressures was studied by surface pressure area isotherms, surface pressure time curves, area time curves and Brewster angle microscopy. Both forms of the compound were found to form monolayers at the air/water interface although it does not have long alkyl chain. A large area expansion in the monolayer corresponding to a zero th order reaction was found at the initial stage of the UV light irradiation. A series of dynamic investigations revealed that at high pressure after phase transition in the monolayer, the surface pressure changes greatly under alternative irradiation of UV and visible light. An obvious morphological change accompanying with the photochromism was observed in situ .
文摘The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.
基金financially supported by the National Natural Science Foundation of China(No.22179014,21603019)program for the Hundred Talents Program of Chongqing University。
文摘The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KJCX-EW-W09)the National Natural Science Foundation of China (91027042, 21073199)
文摘In this investigation, the adsorption of benzonitrile at the air/water interface was addressed using vibrational sum-frequency spectroscopy. Using ppp and ssp polarization combinations, the authors detected the symmetric stretching mode of the cyano (CN) group and calculated the orientation of benzonitrile at the interface. In addition, the adsorption isotherm was determined in terms of the hyperpolarizability element by varying the bulk benzonitrile concentration. The adsorption energy was obtained from fitting this isotherm. This work will add to our understanding of chemical processes relevant to retention, degradation, and photolysis of benzonitriles in the environment.
基金The project supported by the National Natural Science Foundation of China (Grant No.19672070)
文摘The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
基金The project supported by the National Natural Science Foundation of China (19672070)
文摘The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.
文摘High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design.However,sometimes such analyses suffer inaccuracies since the air–water interface effects,especially in the transition phase,are not fully accounted for.Hence,understanding the behaviour at the transition speed is of fundamental importance for the designer.The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz.,knuckles,chines and transom,with resultant spray generation.In such cases,the application of potential theory at high speeds introduces limitations.This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects,with validations through experiments to compare the drag,dynamic trim and wetted surface area.The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects.The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests.It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids.Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag,and their ability to capture the spray resulting from the air–water interaction.The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface,drag at the pre-planing and full planing range and dynamic trim angles.
文摘This study on the sectional and vertical distribution of dissolved oxygen (DO) and the O_2 fluxes acrossthe sea-air interface in East China Sea (ESC) waters shows that the waters were in steady state and thatthe difference of DO was great in upper and bottom waters in Apr. 1994; but that seawater mixingwas strong and the difference of DO was small in upper and bettom waters in Oct. 1994. The above con-dusions were specially obvious in continental shelf waters under 100m. The DO maximum in subsurfacelayer waters appeared only at several stations and in general the DO in the waters decreased with depth.The horizontal distributions of O_2 fluxes across the sea-air interface appeared in stripes in Leg 9404 whenmost regions covend were supersaturated with O_2. seawater to air flux wn large, and that on section No.1was 1.594 L/m^2·d. The horizontal distribution of O_2 fluxes across the sea-air interface appeared lumpy inLeg 9410, when most regions covered were unsaturated with O_2. O_2 was dissolved from air to seawater,and the fluxes were 0.819 L/m^2·d on section No. 1 in Leg 9310, 0.219 L/m^2·d in Leg 9410. The mainreasons for DO change in surface layer seawater were the mixture of upper and bottom layer water, and theexchange of O_2 across the sea-air interface. The variation of DO by biological activity was only 20% of totalchange of DO.
基金The project was supported by the National Natural Science Foundation of China (No.29774016).
文摘Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is equal to 1750. The substitution extent, defined by the number of substituting units in a chain, for the four FPVA samples was in the range of 0.5-5 perfluorooctanoyl groups per chain. The FPVA samples with the highest substitution extent still had good solubility in water. It was shown by experimental measurement at 30.0 +/- 0.1 degreesC that the surface tension of the aqueous solution of the highest substituted FPVA decreased to 16.6 mN/m at a higher concentration, e.g. about 0.1 g/mL. Obviously, macromolecules of FPVA exhibit a very strong tendency to adsorb at the air-water interface, because the hydrophobic perfluorooctanoyl groups in FPVA have a very high surface activity as they are in small molecular fluorinated surfactants. The chain conformation of such a model polymer adsorbed on the air-water interface was also discussed.
文摘Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.
基金This research is part of the project of the biogeochemical cycling of multi-materials in the Changjiang estuarine and coastal complex ecosystem supported by the National Natural Science Key Foundation of China under contract Nos 40131020 and 49801018 the Tidal Flat Project by Science and Technology Committee of Shanghai under contract No. 04DZ12049+1 种基金 China Postdoctoral Science Foundation under contract No. 2005037135 Shanghai Postdoctoral Science Foundation under contract No.04R214122.
文摘Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.
基金supported by National Science Foundation of China(52201254)Shandong Province(ZR2020MB090,ZR2020QE012)the project of“20 Items of University”of Jinan(202228046)。
文摘The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.
基金supported by funding from King Abdullah University of Science and Technology(KAUST)
文摘Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515110859)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province+2 种基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut National de la Recherche Scientifique(INRS)。
文摘Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
基金supported by the National Natural Science Foundation of China (21838003, 91534122)the Social Development Program of Shanghai (17DZ1200900)+2 种基金the Shanghai Scientific and Technological Innovation Project (18JC1410600)the Program for Shanghai Youth Top-notch Talentthe Fundamental Research Funds for the Central Universities (222201718002)
文摘Highly active and durable bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) play a pivotal role in overall water splitting. Herein, we demonstrate the construction of interface-strengthened CoP nanosheet array with Co2P nanoparticles as such an electrocatalyst through a facile hydrothermal reaction and the subsequent phosphorization process. The twodimensional (2D) nanosheets with thickness of^55 nm expose a great number of active sites. The surface chemical state indicates that the strongly coupled CoP/Co2P electrocatalysts can adsorb or generate more targeted intermediates (e.g. OH- or OOH*) for both HER/OER. As a result, the CoP/Co2P electrocatalysts exhibit small overpotentials of 68 and 256 mV to drive 10 mA cm^-2 for HER and OER, respectively, outperforming most of the recently reported Co-based electrocatalysts. Furthermore, an alkaline electrolyzer assembled by using CoP/Co2P as both cathode and anode can achieve a current density of 10 mA cm^-2 at a low voltage of 1.57 V and work continuously for over 58 h. This work provides a feasible structural design for transition metal phosphides electrocatalysts with efficient and stable overall water splitting.