The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
The outlet flow fields of a low-speed repeating-stage compressor with bowed stator stages are measured with five-hole probe under the near stall condition when the rotor/stator axial gap varies. The performances of th...The outlet flow fields of a low-speed repeating-stage compressor with bowed stator stages are measured with five-hole probe under the near stall condition when the rotor/stator axial gap varies. The performances of the straight stator stages are investigated and compared to those of the bowed stator stages. The results show that using bowed stator stages could alleviate the flow separation at both upper and low corners of the suction surface and the endwalls, and decrease the losses along the flow passage as well as the outlet flow angle. As the rotor/stator axial gap decreases, although the diffusion capacity of the compressor increases obviously, the outlet flow field in the straight stator stages deteriorates quickly. By contrast, little changes occur in the bowed stator stages, indicating that as the rotor/stator axial gap decreases, improved performance is achieved in the bowed stator stages.展开更多
Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and...Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and pedo-diversity, influencing nutrient cycles, and maintain- ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid- ered critical to develop ecologically sustainable forest management sys- tems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature re- viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade- tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa- rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.展开更多
Forest gaps, openings in the canopy caused by death of one or more trees, have a profound effect on forest regeneration and drive the forest growth cycle. It is therefore necessary to understand the effects of forest ...Forest gaps, openings in the canopy caused by death of one or more trees, have a profound effect on forest regeneration and drive the forest growth cycle. It is therefore necessary to understand the effects of forest gaps on regeneration for modern forest management. In order to provide a quantitative assessment of the effects of forest gaps on regen-eration of woody plants, we conducted this review of gap effects on woody plant regeneration on the basis of 527 observations from 42 indi-vidual papers, and reported the results of these data in a meta-analysis. Overall, densities of regenerated woody plants were significantly greater (359%) in forest gaps than on the closed-canopy forest floor. The regen-eration density in gaps of plantation forests was significantly greater (P<0.05) than that of natural forest because the regeneration in gaps of plan-tation forests was improved by both gap effects and experimental meas-ures. Similarly, in comparison to natural gaps, regeneration was better enhanced in artificial gaps. Regeneration density exhibited a significantly positive correlation with gap size, but a negative correlation with gap age because the gap size decreased with increasing gap age. Shade tolerance of woody plants affected regeneration density in gaps and understory. Average regeneration density of shade-tolerant species exhibited a sig-nificantly positive response to gaps but densities remained lower in total than those of intermediate and shade-intolerant species. Gap effects on regeneration decreased in response to increasing temperature and pre-cipitation because of the limiting effects of lower temperature and moisture on woody plant regeneration. In summary, forest gaps enhance woody plant regeneration, and the effects of gaps varied by forest type, gap characteristics, environmental factors and plant traits. The results of this meta-analysis are useful for better understanding the effects and roles of gaps on forest regeneration and forest management.展开更多
The present study aims to give general hints about hydrodynamic interactions for water wave diffraction on a super large floating structure composed of a large number of box-shaped modules with many small gaps in betw...The present study aims to give general hints about hydrodynamic interactions for water wave diffraction on a super large floating structure composed of a large number of box-shaped modules with many small gaps in between. And meanwhile, it also aims to seek for an effective way to take the gap influence into consideration without numerical difficulties existing in conventional methods. An asymptotic matching technique is exploited by virtue of the smallness of gaps. Formal potential solutions are established for the near field around the gap ends and the far field away from gap ends, respectively, and the unknowns in those solutions are uniquely determined by asymptotic matching. The eigen-function expansion method is used for the outer far field and a series of pulsating sources at each gap end is introduced to simulate the gap influence. Strong hydrodynamic interaction is observed and a new resonant phenomenon, the mechanism of which differs absolutely from any known ones, is revealed in the present study. Sharp peak responses for both vertical and horizontal wave-exciting forces on each block are found around some special resonance frequencies, which depend on the draft of the structure and the gap width. The present results are of practical significance to the design of links (connectors) of modules for super large floating structures. And the importance is also closely related to the hydro-elasticity analysis for super large floating structures, in which local loads may be as important as the integrated loads.展开更多
China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly l...China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.展开更多
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically ...The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.展开更多
Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbance...Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbances that are attributable to climate change. We investigated gap characteristics in terms of size, age, and gap-maker to quantify the gap disturbance regimes in an intact old-growth tropical montane rainforest on Hainan Island, China. The intensity of typhoons has increased since 1949, and typhoon winds blow mostly (45.5%) from the northeast corner of Hainan Island, resulting in a higher frequency of gaps in the northeast. A total of 221 gap-makers (trees that fell to create canopy gaps) and 53 gaps were observed in a 3.16 ha old-growth rainforest. Most canopy gaps (85%) were < 200 m(2). The average size of canopy gaps was smaller in the rainforest than in other tropical forests, while the average size of expanded gaps was similar to those in other tropical forests. The maximum age of gaps was 23.5 years indicating that gaps had more rapid turnover than other parts of tropical forests. The frequency distribution of gap-makers followed a lognormal distribution with a distinctive peak at three gap-makers, which was different from the inverse J-shaped curve typical of other tropical forests. Gaps were recorded mainly on slopes between 20A degrees and 35A degrees and wood density of gap-makers was between 0.6 and 0.7 g cm(-3). Our results suggest that small-scale disturbance was the dominant agent of gap formation in this old-growth rainforest that is subject to increasing typhoon disturbances.展开更多
In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation...In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.展开更多
By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction between waves and...By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction between waves and multiple objects with narrow gaps. In the numerical model, the fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface and the constant artificial damping is employed in the gaps to approximate the viscous dissipation due to vortex motion and flow separation. The computational domain is discretized using a higher-order boundary element method (HOBEM). The proposed model is firstly validated against the published experimental data and numerical results of the wave height in the narrow gap between two boxes, the wave heights in the two gaps of three boxes, and wave loads on the boxes. Then, the extensive numerical experiments are performed to study the influences of the number of the boxes and the gap spacing on the resonant frequency, reflected and transmitted wave heights and wave loads on the boxes.展开更多
Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. ...Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.展开更多
Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classificat...Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.展开更多
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
基金National Natural Science Foundation of China (50646021)Chinese Specialized Research Fund for the Doctoral Pro-gram of Higher Education (20060213007)
文摘The outlet flow fields of a low-speed repeating-stage compressor with bowed stator stages are measured with five-hole probe under the near stall condition when the rotor/stator axial gap varies. The performances of the straight stator stages are investigated and compared to those of the bowed stator stages. The results show that using bowed stator stages could alleviate the flow separation at both upper and low corners of the suction surface and the endwalls, and decrease the losses along the flow passage as well as the outlet flow angle. As the rotor/stator axial gap decreases, although the diffusion capacity of the compressor increases obviously, the outlet flow field in the straight stator stages deteriorates quickly. By contrast, little changes occur in the bowed stator stages, indicating that as the rotor/stator axial gap decreases, improved performance is achieved in the bowed stator stages.
基金supported through funds provided by Regione Calabria within the project"Robinwood Plus"-Interreg IV C
文摘Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and pedo-diversity, influencing nutrient cycles, and maintain- ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid- ered critical to develop ecologically sustainable forest management sys- tems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature re- viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade- tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa- rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.
基金supported by grants from the National Basic Research Program of China(973 Program)(2012CB416906)National Nature Scientific Foundation of China(31330016)
文摘Forest gaps, openings in the canopy caused by death of one or more trees, have a profound effect on forest regeneration and drive the forest growth cycle. It is therefore necessary to understand the effects of forest gaps on regeneration for modern forest management. In order to provide a quantitative assessment of the effects of forest gaps on regen-eration of woody plants, we conducted this review of gap effects on woody plant regeneration on the basis of 527 observations from 42 indi-vidual papers, and reported the results of these data in a meta-analysis. Overall, densities of regenerated woody plants were significantly greater (359%) in forest gaps than on the closed-canopy forest floor. The regen-eration density in gaps of plantation forests was significantly greater (P&lt;0.05) than that of natural forest because the regeneration in gaps of plan-tation forests was improved by both gap effects and experimental meas-ures. Similarly, in comparison to natural gaps, regeneration was better enhanced in artificial gaps. Regeneration density exhibited a significantly positive correlation with gap size, but a negative correlation with gap age because the gap size decreased with increasing gap age. Shade tolerance of woody plants affected regeneration density in gaps and understory. Average regeneration density of shade-tolerant species exhibited a sig-nificantly positive response to gaps but densities remained lower in total than those of intermediate and shade-intolerant species. Gap effects on regeneration decreased in response to increasing temperature and pre-cipitation because of the limiting effects of lower temperature and moisture on woody plant regeneration. In summary, forest gaps enhance woody plant regeneration, and the effects of gaps varied by forest type, gap characteristics, environmental factors and plant traits. The results of this meta-analysis are useful for better understanding the effects and roles of gaps on forest regeneration and forest management.
基金Project supported by the National Natural Science Foundation of China(Grant No.59879011 and 19732004)the Foundation of the Ministry of Education of China
文摘The present study aims to give general hints about hydrodynamic interactions for water wave diffraction on a super large floating structure composed of a large number of box-shaped modules with many small gaps in between. And meanwhile, it also aims to seek for an effective way to take the gap influence into consideration without numerical difficulties existing in conventional methods. An asymptotic matching technique is exploited by virtue of the smallness of gaps. Formal potential solutions are established for the near field around the gap ends and the far field away from gap ends, respectively, and the unknowns in those solutions are uniquely determined by asymptotic matching. The eigen-function expansion method is used for the outer far field and a series of pulsating sources at each gap end is introduced to simulate the gap influence. Strong hydrodynamic interaction is observed and a new resonant phenomenon, the mechanism of which differs absolutely from any known ones, is revealed in the present study. Sharp peak responses for both vertical and horizontal wave-exciting forces on each block are found around some special resonance frequencies, which depend on the draft of the structure and the gap width. The present results are of practical significance to the design of links (connectors) of modules for super large floating structures. And the importance is also closely related to the hydro-elasticity analysis for super large floating structures, in which local loads may be as important as the integrated loads.
基金the project "Cash Crops Research Network of China" of the Center for Resources, Environment and Food Security, China Agricultural UniversityProfessor Oene Oenema from Alterra Wageningnen University, the Netherlands, for his financial support of the research
文摘China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 51307) and the National Natural Science Foundation of China (Grant No 50575222).
文摘The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.
基金supported by the Ministry of Science and Technology(2012BAD22B01 and 2006BAD03A04)special funds of Research Institute of Tropical Forestry,Chinese Academy of Forestry(RITFYWZX2012-02CAFYBB2014QA010)
文摘Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbances that are attributable to climate change. We investigated gap characteristics in terms of size, age, and gap-maker to quantify the gap disturbance regimes in an intact old-growth tropical montane rainforest on Hainan Island, China. The intensity of typhoons has increased since 1949, and typhoon winds blow mostly (45.5%) from the northeast corner of Hainan Island, resulting in a higher frequency of gaps in the northeast. A total of 221 gap-makers (trees that fell to create canopy gaps) and 53 gaps were observed in a 3.16 ha old-growth rainforest. Most canopy gaps (85%) were < 200 m(2). The average size of canopy gaps was smaller in the rainforest than in other tropical forests, while the average size of expanded gaps was similar to those in other tropical forests. The maximum age of gaps was 23.5 years indicating that gaps had more rapid turnover than other parts of tropical forests. The frequency distribution of gap-makers followed a lognormal distribution with a distinctive peak at three gap-makers, which was different from the inverse J-shaped curve typical of other tropical forests. Gaps were recorded mainly on slopes between 20A degrees and 35A degrees and wood density of gap-makers was between 0.6 and 0.7 g cm(-3). Our results suggest that small-scale disturbance was the dominant agent of gap formation in this old-growth rainforest that is subject to increasing typhoon disturbances.
基金the National Natural Science Foundation of China (10672017 and 10632020)
文摘In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.
基金The National Natural Science Foundation of China under contract Nos 51179028,51222902 and 51221961the New Century Excellent Talents in University of China under contract No.NCET-13-0076
文摘By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction between waves and multiple objects with narrow gaps. In the numerical model, the fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface and the constant artificial damping is employed in the gaps to approximate the viscous dissipation due to vortex motion and flow separation. The computational domain is discretized using a higher-order boundary element method (HOBEM). The proposed model is firstly validated against the published experimental data and numerical results of the wave height in the narrow gap between two boxes, the wave heights in the two gaps of three boxes, and wave loads on the boxes. Then, the extensive numerical experiments are performed to study the influences of the number of the boxes and the gap spacing on the resonant frequency, reflected and transmitted wave heights and wave loads on the boxes.
基金the National Natural Science Foundation of China(Grant Nos.50905182 and 51175501)
文摘Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.
基金financially supported by grant from National Natural Science Foundation of China(No.31300533)
文摘Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.