A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy resi...A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
Cathodic Protection system is an efficient system used for protecting the underground metal objects from corrosion. In this paper the use of Cathodic Protection (CP) system and how they can be developed to simulate co...Cathodic Protection system is an efficient system used for protecting the underground metal objects from corrosion. In this paper the use of Cathodic Protection (CP) system and how they can be developed to simulate corrosion control solution was illustrated. The aim of developing a Cathodic Protection system is to provide control over oil pipelines and to reduce the incidence of corrosion. The proposed system integrates the technology of wireless sensor Network (WSN) in order to collect potential data and to realize remote data transmission. In this system each WSN receives the data from the environment and forwards it to a Remote Terminal Unit (RTU). Then each RTU forwards it to its base station (BS). In this work Labview 2010 program was used, due to its high potentials. In addition it contains a Tool Kit that supports the wireless sensor network. In this simulation used many cases study to test and monitoring data and get optimum results, least time delay and high speed to prevent corrosion.展开更多
A sensor graph network is a sensor network model organized according to graph network structure.Structural unit and signal propagation of core nodes are the basic characteristics of sensor graph networks.In sensor net...A sensor graph network is a sensor network model organized according to graph network structure.Structural unit and signal propagation of core nodes are the basic characteristics of sensor graph networks.In sensor networks,network structure recognition is the basis for accurate identification and effective prediction and control of node states.Aiming at the problems of difficult global structure identification and poor interpretability in complex sensor graph networks,based on the characteristics of sensor networks,a method is proposed to firstly unitize the graph network structure and then expand the unit based on the signal transmission path of the core node.This method which builds on unit patulousness and core node signal propagation(called p-law)can rapidly and effectively achieve the global structure identification of a sensor graph network.Different from the traditional graph network structure recognition algorithms such as modularity maximization and spectral clustering,the proposed method reveals the natural evolution process and law of graph network subgroup generation.Experimental results confirm the effectiveness,accuracy and rationality of the proposed method and suggest that our method can be a new approach for graph network global structure recognition.展开更多
This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed...This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.展开更多
The condition of bolted connections significantly affects the structural safety.However,conventional bolt tension sensors fail to provide precise measurements due to their bulky size or inadequate stability.This study...The condition of bolted connections significantly affects the structural safety.However,conventional bolt tension sensors fail to provide precise measurements due to their bulky size or inadequate stability.This study employs the piezoresistive effect of crystalline silicon material to fabricate an ultrathin sensor.The sensor exhibits a linear relationship between pressure and voltage,an exceptional stability at varying temperatures,and a superior resistance to corrosion,making it adaptable and user-friendly for applications of high-strength bolt tension monitoring.A monitoring system,incorporating the proposed sensor,has also been developed.This system provides real-time display of bolt tension and enables the assessment of sensor and structural conditions,including bolt loosening or component failure.The efficacy of the proposed sensor and monitoring system was validated through a project carried out at the Xiluodu Hydropower Plant.According to the results,the sensor and online monitoring system effectively gauged and proficiently conveyed and stored bolt tension data.In addition,correlations were created between bolt tensions and essential unit parameters,such as water head,active power,and pressures at vital points,facilitating anomaly detection and early warning.展开更多
The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintai...The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintain a steady indoor temperature in summer and winter,the control quality cannot meet the related requirements of air-conditioning automation,such as large overshoot,large steady state error.long regulating time,etc.In view of these factors,this paper develops a fractional order PID controller to deal with such problem associated with FCU.Then,by varving mutation factor and crossover rate of basic differential evolution algorithmadaptivelv,a modified differential evolution algorithm(MDEA)is designed to tune the satisfactory values of five parameters of indoor temperature fractional order PID controller.This fractional order PID coutrol system is configured and the corresponding mumerical simulation is conducted by means of MATLAB software.The results indicate that the proposed fractional order PID control svstem and MDEA are reliable and the related control performance indexes meet with the related requirements of comfortable air-conditioning design and control criteria.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
基金National Natural Science Foundation of China(No.31101085)
文摘A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
文摘Cathodic Protection system is an efficient system used for protecting the underground metal objects from corrosion. In this paper the use of Cathodic Protection (CP) system and how they can be developed to simulate corrosion control solution was illustrated. The aim of developing a Cathodic Protection system is to provide control over oil pipelines and to reduce the incidence of corrosion. The proposed system integrates the technology of wireless sensor Network (WSN) in order to collect potential data and to realize remote data transmission. In this system each WSN receives the data from the environment and forwards it to a Remote Terminal Unit (RTU). Then each RTU forwards it to its base station (BS). In this work Labview 2010 program was used, due to its high potentials. In addition it contains a Tool Kit that supports the wireless sensor network. In this simulation used many cases study to test and monitoring data and get optimum results, least time delay and high speed to prevent corrosion.
基金This research is supported by the Natural Science Foundation Project of Fujian Provincial Department of Science and Technology(Grant No.2020J01385)Digital Fujian Industrial Energy Big Data Research Institute(Grant No.KB180045)Provincial Key Laboratory of Industrial Big Data Analysis and Application(Grant No.KB180029).
文摘A sensor graph network is a sensor network model organized according to graph network structure.Structural unit and signal propagation of core nodes are the basic characteristics of sensor graph networks.In sensor networks,network structure recognition is the basis for accurate identification and effective prediction and control of node states.Aiming at the problems of difficult global structure identification and poor interpretability in complex sensor graph networks,based on the characteristics of sensor networks,a method is proposed to firstly unitize the graph network structure and then expand the unit based on the signal transmission path of the core node.This method which builds on unit patulousness and core node signal propagation(called p-law)can rapidly and effectively achieve the global structure identification of a sensor graph network.Different from the traditional graph network structure recognition algorithms such as modularity maximization and spectral clustering,the proposed method reveals the natural evolution process and law of graph network subgroup generation.Experimental results confirm the effectiveness,accuracy and rationality of the proposed method and suggest that our method can be a new approach for graph network global structure recognition.
基金supported by the National Natural Science Foundation of China(No.91960110)the National Science and Technology Major Project(No. 2017-I0006-0007)the Fundamental Research Funds for the Central Universities(NP2022418)。
文摘This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.
文摘The condition of bolted connections significantly affects the structural safety.However,conventional bolt tension sensors fail to provide precise measurements due to their bulky size or inadequate stability.This study employs the piezoresistive effect of crystalline silicon material to fabricate an ultrathin sensor.The sensor exhibits a linear relationship between pressure and voltage,an exceptional stability at varying temperatures,and a superior resistance to corrosion,making it adaptable and user-friendly for applications of high-strength bolt tension monitoring.A monitoring system,incorporating the proposed sensor,has also been developed.This system provides real-time display of bolt tension and enables the assessment of sensor and structural conditions,including bolt loosening or component failure.The efficacy of the proposed sensor and monitoring system was validated through a project carried out at the Xiluodu Hydropower Plant.According to the results,the sensor and online monitoring system effectively gauged and proficiently conveyed and stored bolt tension data.In addition,correlations were created between bolt tensions and essential unit parameters,such as water head,active power,and pressures at vital points,facilitating anomaly detection and early warning.
基金the National Natural Science Foundation of China(Nos.61364004 and 51808275)the Chinese Scholars to Study Overseas Sponsored by ChinaScholarship Council Foundation(No.201408625045)+1 种基金the Doctoral Research Funds of Lanzhou University of Technology(No.04-237)the Alumni Foundation Civil Engineering 77,Lanzhou University of Technology(No.TM-QK1301)。
文摘The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintain a steady indoor temperature in summer and winter,the control quality cannot meet the related requirements of air-conditioning automation,such as large overshoot,large steady state error.long regulating time,etc.In view of these factors,this paper develops a fractional order PID controller to deal with such problem associated with FCU.Then,by varving mutation factor and crossover rate of basic differential evolution algorithmadaptivelv,a modified differential evolution algorithm(MDEA)is designed to tune the satisfactory values of five parameters of indoor temperature fractional order PID controller.This fractional order PID coutrol system is configured and the corresponding mumerical simulation is conducted by means of MATLAB software.The results indicate that the proposed fractional order PID control svstem and MDEA are reliable and the related control performance indexes meet with the related requirements of comfortable air-conditioning design and control criteria.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.