The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-...The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.展开更多
It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the t...It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.展开更多
A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has...A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.展开更多
The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin...The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.展开更多
The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to...The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.展开更多
The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined...The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.展开更多
Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Ce...Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in...Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m...Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.展开更多
Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess ...Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.展开更多
This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha ...This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha Weather Station and NCEP/NCAR in the same period.Results suggest that the primary factors affecting sea-surface thermal budget are solar shortwave penetrating radiation and latent heat flux.Regardless of their changes,however,the thermal gain is reduced or becomes net loss at the active stage and the thermal gain gets gradually increased in the weakening and lull periods:during the first emergence of southwest monsoon the net loss happens thanks to the dramatic diminution of penetrating radiation resulting from increased cloudiness and intense precipitation:while at the re-emergence of the wind.reduced net sea-surface thermal gain is attributed to the sharp increase in latent heat flux resulting from intense evaporation:owing to great thermal inertia of water the SST change lags behind that of heat budget over the sea surface, and the lagging is responsible for regulating the budget by affecting latent heat fluxes,which,in turn.has effect upon the change of the SST,thereby forming short-term oscillations that are in association with the active/break phases of the monsoons.Part of the conclusions have been borne out by the observational study based on 1998 and 2002 data.展开更多
Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk met...Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk method from a buoy observation in the northern Huanghai sea. The effects of buoy motion on flux calculated by the eddy covariance method are demonstrated. The research shows that a motion correction can improve the correlation coefficient between the C02 fluxes esti- mated from two different levels. Without the CO2-H20 cross-correlation correction which is termed as PKT correction, the air-sea CO2 fluxes estimated by eddy covariance method using the motion corrected data are nearly an order of magnitude larger than those estimated by the bulk method. After the CO2-H20 cross-correlation correction, some eddy covariance CO2 fluxes indeed become closer to the bulk CO2 flux, whereas some are overcorrected which are in response to small water vapor flux.展开更多
A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropi...A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.展开更多
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and af...With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.展开更多
We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS s...We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed. In addition, we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0, based on satellite remote sensing data. The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a. Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them. This result has important implications for prediction of the SCS summer monsoon, and provides a scientific basis for further study of the onset process of this monsoon and its prediction. Based on these results, a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012. The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year, while the onset date in 2012 will be 1-2 pentads later.展开更多
The Prydz Bay in the Antarctic is an important area in the Southern Ocean due to its unique geographic feature. It plays an important role in the carbon cycle in the Southern Ocean. To investigate the distributions of...The Prydz Bay in the Antarctic is an important area in the Southern Ocean due to its unique geographic feature. It plays an important role in the carbon cycle in the Southern Ocean. To investigate the distributions of carbon dioxide in the atmosphere and surface seawater and its air-sea exchange rates in this region, the Chinese National Antarctic Research Expedition (CHINARE) had set up several sections in the Prydz Bay. Here we present the results from the CHINARE-XVI cruises were presented onboard R/V Xue/ong from November 1999 to April 2000 and the main driving forces were discussed controlling the distributions of partial pressure of carbon dioxide. According to the partial pressure of carbon dioxide distributions, the Prydz Bay can be divided into the inside and outside regions. The partial pressure of carbon dioxide was low in the inside region but higher in the outside region during the measurement period. This distribution had a good negative correlation with the concentrations of ehlorophyll-a in general, suggesting that the partial pressure of carbon dioxide was substantially affected by biological production. The results also indicate that the biological produetion is most likely the main driving force in the marginal ice zone in the Southern Ocean in summer. However, in the Antarctic divergence sector of the Prydz Bay (about 64°S), the hydrological processes become the controlling factor as the sea surface partial pressure of carbon dioxide is much higher than the atmospheric one due to the upwelling of the high DIC CDW, and this made the outside of Prydz Bay a source of carbon dioxide. On the basis of the calculations, the CO2 flux in January (austral summer) was -3.23 mmol/(m^2 · d) in the inner part of Prydz Bay, i.e. , a sink of atmospheric CO2, and was 0.62 mmol/(m^2 · d) in the outside part of the bay, a weak source of atmospheric CO2. The average air-sea flux of CO2 in the Prydz Bay was 2.50 mmol/(m^2 · d).展开更多
The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean...The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean and atmosphere(i.e.air-sea O_(2)flux),which is one of the major contributors to uncertainties in the O_(2)-based estimations of the carbon uptake.Here,we explore the variability of air-sea O_(2)flux with the use of outputs from Coupled Model Intercomparison Project phase 6(CMIP6).The simulated air-sea O_(2)flux exhibits an obvious warming-induced upward trend(~1.49 Tmol yr−2)since the mid-1980s,accompanied by a strong decadal variability dominated by oceanic climate modes.We subsequently revise the O_(2)-based carbon uptakes in response to this changing air-sea O_(2)flux.Our results show that,for the 1990−2000 period,the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr−1 respectively,overall consistent with estimates derived by the Global Carbon Project(GCP).An enhanced carbon uptake is found in both land and ocean after year 2000,reflecting the modification of carbon cycle under human activities.Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.展开更多
Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanc...Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.展开更多
基金The Marine Public Welfare Project of China under contract Nos200805029,200905012,200905025,and 201005034the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract Nos JG0821 and JG1021
文摘The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.
文摘It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.
基金The National Basic Research Program of China under contract No. 2011CB403501the Fund for Creative Research Groups by NSFC of China under contract No. 40821004+1 种基金the Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. KZCX2-YW-Q07-02the High-Tech Research and Development Program (863 Program) of China under contract No. 2006AA09A309
文摘A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.
基金supported by the National Natural Science Foundation of China (Grant Numbers. 41276033)the Jiangsu Science and Technology Support Project (Grant Number. BE2014729)+1 种基金the support from Jiangsu Provincial Government through Jiangsu Chair Professorshipthe 2015 Jiangsu Program of Entrepreneurship and Innovation Group
文摘The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.
文摘The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.
基金The National Natural Science Foundation of China (NSFC) under contract Nos 40976116 and 40531007the Fujian Science Foundation under contract No.2009J06025+3 种基金the SOA Youth Foundation Grant under contract No.2012538the Chinese Projects for Investigations and Assessments of the Arctic and Antarctic under contract Nos CHINARE2012: 01-04, 02-01, 03-04, 04-03, 04-04, and CHINARE2013: 01-04, 02-01, 03-04, 04-03, 04-04the Chinese International Cooperation Projects under contract Nos IC201114, IC201201, IC201308, and HC120601the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract Nos 2012006 and 2014006
文摘The 3rd Chinese National Arctic Research Expedition (CHINARE-Arctic III) was carried out from July to September in 2008. The partial pressure of CO2 (pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during luly 11-27, 2008, and a large number of seawater samples were taken for total alkalinity (TA) and total dissolved inorganic carbon (DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 laatm (1 μatm = 1.013 25× 10-1Pa). The lowest pCOz values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at -9.4, -16.3, and -5.1 mmol/(m2.d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea.
文摘Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
文摘Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金supported by National Natural Science Foundation of China(No.12105067)the ITER Organization and China Domestic Agency for the support of this work(No.ITER5.5.P01.CN.05)。
文摘Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.
基金funded by the West Light Scholar of the Chinese Academy of Sciences(xbzg-zdsys-202202)the Natural Science Foundation of Henan(Grant No.232300420165)Integrated Scientific Investigation of the North-South Transitional Zone of China(2017FY100900)。
文摘Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.
基金the NSFC (National Natural Science Foundation of China) key program (No.40136010)the NSFC programs (No.40075003 and No.90211010)
文摘This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha Weather Station and NCEP/NCAR in the same period.Results suggest that the primary factors affecting sea-surface thermal budget are solar shortwave penetrating radiation and latent heat flux.Regardless of their changes,however,the thermal gain is reduced or becomes net loss at the active stage and the thermal gain gets gradually increased in the weakening and lull periods:during the first emergence of southwest monsoon the net loss happens thanks to the dramatic diminution of penetrating radiation resulting from increased cloudiness and intense precipitation:while at the re-emergence of the wind.reduced net sea-surface thermal gain is attributed to the sharp increase in latent heat flux resulting from intense evaporation:owing to great thermal inertia of water the SST change lags behind that of heat budget over the sea surface, and the lagging is responsible for regulating the budget by affecting latent heat fluxes,which,in turn.has effect upon the change of the SST,thereby forming short-term oscillations that are in association with the active/break phases of the monsoons.Part of the conclusions have been borne out by the observational study based on 1998 and 2002 data.
基金The National Basic Research Program of China under contract No. 2011CB403501the Public Science and Technology Research Funds Projects of Ocean of the State oceanic Administration of China under contract No. 200905012-9+1 种基金the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No. 41121064the Open Research Foundation for the key Laboratory of Ocean Circulation and Waves.Institute of Oceanology,Chinese Academy of Sciences of China under contract No.KLOCAW1207
文摘Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk method from a buoy observation in the northern Huanghai sea. The effects of buoy motion on flux calculated by the eddy covariance method are demonstrated. The research shows that a motion correction can improve the correlation coefficient between the C02 fluxes esti- mated from two different levels. Without the CO2-H20 cross-correlation correction which is termed as PKT correction, the air-sea CO2 fluxes estimated by eddy covariance method using the motion corrected data are nearly an order of magnitude larger than those estimated by the bulk method. After the CO2-H20 cross-correlation correction, some eddy covariance CO2 fluxes indeed become closer to the bulk CO2 flux, whereas some are overcorrected which are in response to small water vapor flux.
基金The National Key Basic Research Program of China under Grant No.2009CB421404the National Natural Science Foundation of China-Regional Cooperation Project under Grant No.40921160379+1 种基金the National Natural Science foundation of China under Grant No.40730951the Fundamental Research Funds for the Central Universities under Grant No.11lgjc10
文摘A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.
基金National Natural Science Foundation of China under contract No. 40075003The Prior Study of State Key Project for Basic Research "East Asian Monsoon Experiment".
文摘With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed. In addition, we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0, based on satellite remote sensing data. The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a. Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them. This result has important implications for prediction of the SCS summer monsoon, and provides a scientific basis for further study of the onset process of this monsoon and its prediction. Based on these results, a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012. The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year, while the onset date in 2012 will be 1-2 pentads later.
基金The National Natural Science Foundation of China under contract Nos40276001,40406014,40676062 and 40531007the Polar StrategyFoundation of under contract No.20070224+3 种基金the National Key Technology Reaserch and Development Program for the11th Five-year Plan of China undercontract No.2006BAB18B04the Fujian Province Youth Technological Creation of China under contract No.2004J056Fujian Province Natural Science Foundation of China under contract No.Z0513027TIOSOA Foundation
文摘The Prydz Bay in the Antarctic is an important area in the Southern Ocean due to its unique geographic feature. It plays an important role in the carbon cycle in the Southern Ocean. To investigate the distributions of carbon dioxide in the atmosphere and surface seawater and its air-sea exchange rates in this region, the Chinese National Antarctic Research Expedition (CHINARE) had set up several sections in the Prydz Bay. Here we present the results from the CHINARE-XVI cruises were presented onboard R/V Xue/ong from November 1999 to April 2000 and the main driving forces were discussed controlling the distributions of partial pressure of carbon dioxide. According to the partial pressure of carbon dioxide distributions, the Prydz Bay can be divided into the inside and outside regions. The partial pressure of carbon dioxide was low in the inside region but higher in the outside region during the measurement period. This distribution had a good negative correlation with the concentrations of ehlorophyll-a in general, suggesting that the partial pressure of carbon dioxide was substantially affected by biological production. The results also indicate that the biological produetion is most likely the main driving force in the marginal ice zone in the Southern Ocean in summer. However, in the Antarctic divergence sector of the Prydz Bay (about 64°S), the hydrological processes become the controlling factor as the sea surface partial pressure of carbon dioxide is much higher than the atmospheric one due to the upwelling of the high DIC CDW, and this made the outside of Prydz Bay a source of carbon dioxide. On the basis of the calculations, the CO2 flux in January (austral summer) was -3.23 mmol/(m^2 · d) in the inner part of Prydz Bay, i.e. , a sink of atmospheric CO2, and was 0.62 mmol/(m^2 · d) in the outside part of the bay, a weak source of atmospheric CO2. The average air-sea flux of CO2 in the Prydz Bay was 2.50 mmol/(m^2 · d).
基金the World Climate Recruitment Programme’s (WCRP) Working Group on Coupled Modelling (WGCM)the Global Organization for Earth System Science Portals (GO-ESSP)+2 种基金jointly supported by the National Science Foundation of China (Grant Nos. 41991231, 91937302)the China 111 project (Grant No. B13045)supported by Supercomputing Center of Lanzhou University
文摘The measurement of atmospheric O_(2)concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake.However,a discrepancy remains in assessments of O_(2)exchange between ocean and atmosphere(i.e.air-sea O_(2)flux),which is one of the major contributors to uncertainties in the O_(2)-based estimations of the carbon uptake.Here,we explore the variability of air-sea O_(2)flux with the use of outputs from Coupled Model Intercomparison Project phase 6(CMIP6).The simulated air-sea O_(2)flux exhibits an obvious warming-induced upward trend(~1.49 Tmol yr−2)since the mid-1980s,accompanied by a strong decadal variability dominated by oceanic climate modes.We subsequently revise the O_(2)-based carbon uptakes in response to this changing air-sea O_(2)flux.Our results show that,for the 1990−2000 period,the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr−1 respectively,overall consistent with estimates derived by the Global Carbon Project(GCP).An enhanced carbon uptake is found in both land and ocean after year 2000,reflecting the modification of carbon cycle under human activities.Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Science(KZCX2-YW-Q11-02)the National Basic Research Program of China (2012CB417402)
文摘Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.