Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexi...Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.展开更多
How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the...How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.展开更多
Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology us...Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.展开更多
Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are ...Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are critical characters which assure geometrical positions and relationships of those components.Therefore,evaluating the P&O of a component is considered necessary and critical for ensuring accuracy in aircraft assembly.Uncertainty of position and orientation(U-P&O),as a part of the evaluating result of P&O,needs to be given for ensuring the integrity and credibility of the result;furthermore,U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly.However,current research mainly focuses on the process integration of measurement with assembly,and usually ignores the uncertainty of measured result and its influence on quality evaluation.This paper focuses on the expression,analysis,and application of U-P&O in measurement assisted alignment.The geometrical and algebraical connotations of U-P&O are presented.Then,an analytical algorithm for evaluating the multi-dimensional U-P&O is given,and the effect factors and characteristics of U-P&O are discussed.Finally,U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving.Cases are introduced with the methodology.展开更多
文摘Aircraft digital flexible assembly fixture and technologies are widely used in developed countries, while the traditional jig-based assembly mode is still used in China. The application study of aircraft digital flexible assembly system is just beginning in our country recently. To meet the requirements of automated posture alignment and join in digital assembly system for large aircraft components, a novel fitting fixture called 3-axis actuator is developed. On the basis of the actuators, three kinds of posture alignment system for large aircraft components are proposed, including the non-redundant system, the redundant actuating system, and the redundant leg system, and their constitutions and properties are introduced. Through deriving the feeding transmission stiffness model of single actuator and analyzing the inverse kinematics of these systems, the relationship between the external force and the changes of position and orientation of large aircraft component is obtained, and then the postural alignment stiffness models are established. With the method mentioned above, the postural alignment stiffness of three systems is computed by using the algebraic formulate, and the results show that redundant properties can increase system's postural alignment stiffness. As an example, a optimized layout of the assembly system for a given model of aircraft is developed, the results of application show that the layout has many advantages, such as high accuracy, stiffness, stability, reliability, efficiency and flexible, which can satisfy the requirement of aircraft digital assembly system well. The proposed study of postural alignment stiffness for different systems can supply the theoretic support for the optimization layout design of aircraft digital assembly system, and contribute to evaluate the system working performance of systems.
基金Project supported by the National Natural Science Foundation of China (No. 50905161)the Natural Science Foundation of Zhejiang Province (No. Y1110339)the Fundamental Research Funds for the Central Universities of China (No. 2010QNA4024)
文摘How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.
基金This work was supported by the National Natural Science Foundation of China (No. 50331010)
文摘Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.
基金support of National Natural Science Foundation of China (No.50905010)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No.SAMC12-JS-15-044)
文摘Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are critical characters which assure geometrical positions and relationships of those components.Therefore,evaluating the P&O of a component is considered necessary and critical for ensuring accuracy in aircraft assembly.Uncertainty of position and orientation(U-P&O),as a part of the evaluating result of P&O,needs to be given for ensuring the integrity and credibility of the result;furthermore,U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly.However,current research mainly focuses on the process integration of measurement with assembly,and usually ignores the uncertainty of measured result and its influence on quality evaluation.This paper focuses on the expression,analysis,and application of U-P&O in measurement assisted alignment.The geometrical and algebraical connotations of U-P&O are presented.Then,an analytical algorithm for evaluating the multi-dimensional U-P&O is given,and the effect factors and characteristics of U-P&O are discussed.Finally,U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving.Cases are introduced with the methodology.