The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimpl...The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft.展开更多
基金Graduate Innovation and Practice Foundation of Beijing University of Aeronautics amd Astronautics
文摘The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft.