期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Fretting-corrosion mechanisms of Ti6Al4V against CoCrMo in simulated body fluid under various fretting states
1
作者 Jian PU Zupei ZHANG +7 位作者 Yali ZHANG Xiaogang ZHANG Xinlu YUAN Xiaoyu ZHANG Guoxian ZHANG Wen CUI Shu YANG Zhongmin JIN 《Friction》 SCIE EI CAS CSCD 2024年第12期2741-2759,共19页
Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work st... Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work studied the fretting corrosion of Ti6Al4V‒CoCrMo pair in calf serum solution.We established this material pair’s running condition fretting map(RCFM)regarding load and displacement,and revealed the damage mechanism of this material pair in various fretting regimes,namely partial slip regime(PSR),mixed fretting regime(MFR),and gross slip regime(GSR).The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion.Adhesive wear(material transfer)also existed in MFR.The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR,while no apparent damage in PSR.Furthermore,a dense composite material layer with high hardness was formed in the middle contacting area in GSR,which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys.Finally,the ion concentration maps for Ti and Co ions were constructed,which displayed the transition in the amount of released Ti and Co ions under different displacements and loads. 展开更多
关键词 fretting corrosion Ti6al4v alloy CoCrMo alloy composite material layer damage mechanism metal ion release
原文传递
Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater 被引量:14
2
作者 陈君 张清 +2 位作者 李全安 付三玲 王建章 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1022-1031,共10页
The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between... The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low. 展开更多
关键词 Ti6al4v alloy AISI 316 stainless steel TRIBOCORROSION synergistic effect
下载PDF
Deformed microstructure and texture of Ti6Al4V alloy 被引量:11
3
作者 杨柳青 杨延清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3103-3110,共8页
Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engin... Microstructure and texture evolution during hot compression of Ti6Al4 V alloy with an initial equiaxed microstructure were studied in the temperature range of 850-930 °C, strain rate range of 0.01-1 s-1 and engineering compressive strain of 70%. The results indicate that when temperature is below 900 °C and strain rate is higher than 0.1 s-1, the microstructure is mainly composed of elongated α grains. While deforming at higher temperatures and lower strain rates, dynamic recrystallization takes place. Electron back scattered diffraction(EBSD) result shows that during dynamic recrystallization, subgrain boundaries absorb dislocations and the recrystallized grains with high angle grain boundary form. At 930 °C dynamic recrystallization has basically completed, and needlelike α phase forms after water quenching. Pole figure analysis indicates that compared with the initial specimen, textures below 930 °C are weaker, while at 930 °C they are stronger. 展开更多
关键词 Ti6al4v alloy hot compression dynamic recrystallization EBSD TEXTURE
下载PDF
Site occupation evolution of alloying elements in L1_2 phase during phase transformation in Ni_(75)Al_(7.5)V_(17.5)
4
作者 张明义 刘富 +3 位作者 陈铮 郭红军 岳广全 杨坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2439-2443,共5页
Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing proc... Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing process of DO22 phase can be divided into two stages. At the early stage, composition in the centre part of L12 phase almost remains unchanged, and the nucleation and growth of DO22 phase is controlled by the decrease of interface between L12 phases. At the late stage, part of V for growth of DO22 phase is supplied from the centre part of L12 phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing L12 phase migrates into the centre part of L12 phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of DO22 phase is controlled by the evolution of antisite atoms and ternary additions in the centre part of L12 phase. 展开更多
关键词 nickel based superalloys Ni75al7.5v17.5 alloy phase transformation micro-phase field grain growth antisite defect
下载PDF
Site occupation evolution of alloying elements in Ni_3 V phase during phase transformation in Ni_(75)Al_(4.2)V_(20.8)
5
作者 张明义 李志刚 +3 位作者 张金玲 张会占 陈铮 张嘉振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1599-1604,共6页
Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al... Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage. 展开更多
关键词 Ni75al4.2v20.8 alloy grain growth phase transformation microscopic phase-field antisite defect
下载PDF
Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting 被引量:18
6
作者 F.BARTOLOMEU M.BUCIUMEANU +4 位作者 E.PINTO N.ALVES F.S.SILVA O.CARVALHO G.MIRANDA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期829-838,共10页
The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different... The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance. 展开更多
关键词 biomedical alloy Ti6al4v alloy wear behavior MICROSTRUCTURE selective laser melting hot pressing CASTING
下载PDF
Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging 被引量:12
7
作者 Qi ZHANG Zheng-long LIANG +3 位作者 Miao CAO Zi-fan LIU An-feng ZHANG Bing-heng LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1036-1042,共7页
To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolutio... To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM. 展开更多
关键词 selective laser melting Ti6al4v alloy precision forging MICROSTRUCTURE ANISOTROPY
下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:9
8
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6al4v alloy micro/nano structure NAF surface modification
下载PDF
Structural characteristics and high-temperature tribological behaviors of laser cladded NiCoCrAlY−B_(4)C composite coatings on Ti6Al4V alloy 被引量:9
9
作者 Wen-chang WANG Jia-xing LI +1 位作者 Yuan GE De-jun KONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2729-2739,共11页
In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The mo... In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content. 展开更多
关键词 Ti6al4v alloy laser cladding NiCoCralY coating B_(4)C tribological behavior WEAR
下载PDF
Microstructure and electrochemical corrosion behavior of selective laser melted Ti−6Al−4V alloy in simulated artificial saliva 被引量:12
10
作者 Jiang JU Jing-jing LI +6 位作者 Min JIANG Meng-ya LI Li-xiang YANG Kai-ming WANG Chao YANG Mao-dong KANG Jun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期167-177,共11页
Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros... Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃. 展开更多
关键词 Ti−6al−4v alloy selective laser melting MICROSTRUCTURE electrochemical corrosion behavior
下载PDF
Effects of hot isostatic pressing temperature on casting shrinkage densification and microstructure of Ti6Al4V alloy 被引量:5
11
作者 Qian Xu Jian-xin Zhou +4 位作者 Hai Nan Ya-jun Yin Min Wang Xu Shen Xiao-yuan Ji 《China Foundry》 SCIE 2017年第5期429-434,共6页
The Ti6Al4V alloy castings were produced by the investment casting process, and the hot isostatic pressing(HIP) was used to remove shrinkage from castings. The processing pressure and holding time for HIP were 150 MPa... The Ti6Al4V alloy castings were produced by the investment casting process, and the hot isostatic pressing(HIP) was used to remove shrinkage from castings. The processing pressure and holding time for HIP were 150 MPa and 20 min, respectively. Four different HIP temperatures were tested, including 750 ℃, 850 ℃, 920 ℃ and 950 ℃. To evaluate the effects of temperature on densification and microstructure of Ti6Al4V alloy treated by HIP, non-destructive testing and metallographic observation was performed. The experimental results show that the shrinkage was completely closed at 920 ℃ and 950 ℃. The densification of Ti6Al4V alloy increased as the HIP temperature increased below 920 ℃. The lamel ae were more uniform, the thickness of lamel ae was obviously broadened and the structure was coarsen. Besides, the Norton creep equation was used to simulate the effect of different temperatures on the densification of Ti6Al4V alloy during HIP. The simulation results were in good agreement with the experimental results. It was also found that 920 ℃ is a suitable temperature for HIP for Ti6Al4V alloy. 展开更多
关键词 Ti6al4v alloy hot isostatic pressing TEMPERATURE casting shrinkage DENSIFICATION MICROSTRUCTURE
下载PDF
Influence of anions in phosphate and tetraborate electrolytes on growth kinetics of microarc oxidation coatings on Ti6Al4V alloy 被引量:4
12
作者 Xiao-ming WANG Fu-qin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2243-2252,共10页
The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmissi... The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased. 展开更多
关键词 Ti6al4v alloy microarc oxidation PHOSPHATE tetraborate ELECTROLYTE ANIONS growth kinetics
下载PDF
Microstructures and mechanical properties of Ti−Al−V−Nb alloys with cluster formula manufactured by laser additive manufacturing 被引量:10
13
作者 Tian-yu LIU Xiao-hua MIN +2 位作者 Shuang ZHANG Cun-shan WANG Chuang DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3012-3023,共12页
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ... Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys. 展开更多
关键词 Ti−alv−Nb alloy composition design laser additive manufacturing microstructure mechanical properties
下载PDF
Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy 被引量:2
14
作者 YU Jun SONG Ye-pan +4 位作者 LIN Xin CAO Zhen-jie ZENG Quan-ren WANG Jun-jie HUANG Wei-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1015-1027,共13页
The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible a... The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible approach is presented to repair TA15 forgings by employing Ti6Al4V-xTA15 mixed powders in this paper.The performance compatibility of Ti6Al4V-xTA15 powders from the aspects of microhardness,tensile property,heat capacity,thermal expansion coefficient and corrosion resistance with the TA15 forgings was fully investigated.The primaryαlaths were refined and the volume fraction of the secondaryαphase was increased by increasing the mass fraction of TA15 in the mixed Ti6Al4V-xTA15 powders,leading to varied performances.In conclusion,the mixed Ti6Al4V-70%TA15(x=70%)powders is the most suitable candidate and is recommended as the raw material for LAR of TA15 forgings based on overall consideration of the compatibility calculations of the laser repaired zone with the wrought substrate zone. 展开更多
关键词 TA15 alloy Ti6al4v alloy laser additive repairing compatibility
下载PDF
Finite element simulation of real cavity closure in cast Ti6Al4V alloy during hot isostatic pressing 被引量:2
15
作者 Qian Xu Wen Li +2 位作者 Ya-jun Yin Jian-xin Zhou Hai Nan 《China Foundry》 SCIE CAS 2022年第1期55-62,共8页
The healing behavior of shrinkage cavity inside the cast Ti6Al4V alloy during hot isostatic pressing(HIP)was investigated experimentally by interrupted hot isostatic pressing tests.The X-ray micro computed tomography ... The healing behavior of shrinkage cavity inside the cast Ti6Al4V alloy during hot isostatic pressing(HIP)was investigated experimentally by interrupted hot isostatic pressing tests.The X-ray micro computed tomography was used to record the morphology changes before and after hot isostatic pressing.The two-dimensional geometry obtained by the microCT scan was used in simulation to study the evolution of the real shrinkage cavity during hot isostatic pressing.Shrinkage cavities,shrinkage porosity and small gas pores can be effectively eliminated under proper HIP conditions.The two-dimensional morphology in the simulation results agrees well with the experimental results.This study reveals that plastic deformation,creep and diffusion are the main mechanisms of cavity closure during hot isostatic pressing.In addition,the simplified elliptical pores with aspect ratios at different positions were used to replace the real pores to further study the factors affecting the position of dimples after HIP by simulation.It is found that the position of the dimples mainly depends on the aspect ratio of the elliptical pore and the distance between the pore surface and the external surface of the geometric model. 展开更多
关键词 cast Ti6al4v alloy hot isostatic pressing shrinkage cavity simulation closure behavior
下载PDF
Analysis of filling process of Ti6Al4V alloy melt poured in permanent mold during centrifugal casting process 被引量:2
16
作者 盛文斌 李东 +3 位作者 杨锐 刘羽寅 郭景杰 贾均 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期353-357,共5页
Ti6Al4V hip joint was foundered and the filling process of the melt poured in permanent mould during the centrifugal casting process was analyzed and the mathematical model of the filling process was established. Furt... Ti6Al4V hip joint was foundered and the filling process of the melt poured in permanent mould during the centrifugal casting process was analyzed and the mathematical model of the filling process was established. Furthermore, the mathematical model was validated with a wax model experiment. Calculating results show that the centrifugal field has an important influence on the filling process and the melt fills the mould with variational cross sectional area and inclined angle. The cross sectional area is in inverse proportion to the filling speed and its decreasing speed becomes fast with increasing rotating speed. The tangential value of the melt cross sectional free surface inclined angle is in direct proportion to the filling speed and the inclined angle increases with the filling length. Change curves of the cross sectional inclined angle and area were obtained by the wax model experiment when the rotating speeds were 60, 90 and 120 r/min respectively, which shows that the mathematical model is consistent with the experimental results. [ 展开更多
关键词 flow status Ti6al4v alloy cross sectional area permanent mold centrifugal casting
下载PDF
Corrosion resistance improvement of Ti-6Al-4V alloy by anodization in the presence of inhibitor ions 被引量:2
17
作者 A.L.MARTINEZ D.O.FLAMINI S.B.SAIDMAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1896-1909,共14页
Colorful thin oxide films were synthesized by galvanostatic anodization on Ti−6Al−4V alloy.Three different aqueous solutions containing corrosion inorganic inhibitors(Na_(2)MoO_(4),NaH_(2)PO_(4) and NH4VO3)were employ... Colorful thin oxide films were synthesized by galvanostatic anodization on Ti−6Al−4V alloy.Three different aqueous solutions containing corrosion inorganic inhibitors(Na_(2)MoO_(4),NaH_(2)PO_(4) and NH4VO3)were employed for the anodization treatment.The effect of inhibitor anions on the corrosion behavior of the alloy in Ringer solution was studied.Open circuit potential(OCP),Tafel polarization,linear sweep voltammetry(LSV)and chronoamperometry(CA)were performed to evaluate the corrosion performance of the treated electrodes.The incorporation of the inhibitor ions was detected by the release of Mo,V and P through ICP-AES technique.The formed oxides were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results show that compact,amorphous oxides without pores or cracks were obtained independently of the solution used.The sample anodized in Na_(2)MoO_(4) solution registered the lowest corrosion current density(0.11μA/cm^(2)),and it was able to protect the alloy even after 168 h of immersion in Ringer solution.No cracks or corrosion products were detected.The XPS analysis reveals the incorporation of molybdenum to the oxide film in the form of Mo^(6+) and Mo^(4+). 展开更多
关键词 Ti−6al−4v alloy anodization inorganic inhibitors corrosion protection
下载PDF
Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti-6Al-4V alloy 被引量:2
18
作者 Y. PEKBEY K. ASLANTAS Y. PEKBEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期514-526,共13页
The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging tre... The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging treatment(AT)andcryogenic treatment followed by aging treatment(CAT)were conducted on Ti?6Al?4V alloy.Impact tests were performed onheat-treated and untreated samples using different impactor nose geometries(hemispherical,60°and90°conical)to determine theeffect of impactor nose geometry on the damage characteristic.The findings showed that energy absorption increased and areas ofdamage decreased as a result of heat treatment in all treated samples.The highest energy absorption was observed in the CATsamples,due to the increase in energy absorption,the smallest damaged area occurred in the CAT sample,and the largestdeformation was seen in the untreated samples.Additionally,it was seen that the damaged area and deflection were stronglydependent on impactor nose geometry.The maximum deflection and narrowest deformation area were seen with60o conical nosegeometry.The deformation area increased with increasing impactor nose angle. 展开更多
关键词 Ti.6al.4v alloy cryogenic treatment aging treatment low-energy impact test impact damage impactor nose geometry
下载PDF
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
19
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6al4v alloy anodic oxidation Si C nanoparticle composite film
下载PDF
Diffusion bonding of Ti−6Al−4V titanium alloy powder and solid by hot isostatic pressing 被引量:2
20
作者 Yi XIAO Li-hui LANG +1 位作者 Wen-cai XU De-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3587-3595,共9页
The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron micros... The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron microscope(SEM).The microhardness and tensile tests were conducted to investigate the mechanical properties.The results showed that the powder compact was near-fully dense,and the powder/solid interface was tight and complete.The microhardness of the interface was higher than that of the powder compact and solid.The fractures of all powder−solid tensile specimens were on the solid side rather than at the interface,which indicated that a good interfacial strength was obtained.The tensile strength and elongation of the powder compact were higher than those of the solid.It is concluded that the HIP process can successfully fabricate high-quality Ti−6Al−4V powder−solid parts,which provides a novel near net shape technology for titanium alloys. 展开更多
关键词 Ti−6al−4v alloy powder/solid interface hot isostatic pressing diffusion bonding microstructure mechanical properties
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部