A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance b...A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance by developing hexagonal Mo(Si, Al)2 through the development of the halide activated pack cementation coating process on pure Mo substrate. The results show that Mo(Si, Al)2 formed as a main phase on the surface and a little amount of Mo5Si3 also formed. The total thickness of coating is tens ofμm at 1373K. During the cyclic oxidation test at high temperature(at about 1323K in air), mullite (3Al2O3.2SiO2) and some SiO2 formed. The addition of Al is beneficial for MoSi2 coating and the Al-doped coating exhibited only a small weight gain and protected the Mo substrate, while the MoSi2 coating without Al suffered a significant weight loss, indicating a loss of volatile MoO3 after cycles.展开更多
Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), n...Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.展开更多
类金刚石(Diamond-Like Carbon,DLC)涂层刀具结合了基体强度高、韧性好以及涂层硬度高、耐磨性高的优点,可以有效降低刀-屑间摩擦,提高刀具切削寿命和加工效率。采用直流磁控溅射和等离子体辅助化学气相沉积(Plasma-Assisted Chemical V...类金刚石(Diamond-Like Carbon,DLC)涂层刀具结合了基体强度高、韧性好以及涂层硬度高、耐磨性高的优点,可以有效降低刀-屑间摩擦,提高刀具切削寿命和加工效率。采用直流磁控溅射和等离子体辅助化学气相沉积(Plasma-Assisted Chemical Vapor Deposition,PACVD)法分别在硬质合金刀具基体上制备了单一DLC涂层、Cr/W-DLC/DLC复合涂层和Cr/CrN/DLC复合涂层。对比研究了具有不同Cr/x/DLC过渡层的DLC复合涂层硬质合金刀具加工过共晶结构铝硅合金AC9B的切削性能。研究结果表明:切削铝硅合金时,相对于无涂层硬质合金刀具,DLC涂层硬质合金刀具可以明显降低切削力和切削温度,并且具有更长的刀具切削寿命;Cr/W-DLC/DLC复合涂层硬质合金刀具的切削力最小,切削寿命最长。经显微分析,发现DLC涂层硬质合金刀具切削铝硅合金时的磨损机理主要是黏结磨损和硬质点磨损。展开更多
文摘A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance by developing hexagonal Mo(Si, Al)2 through the development of the halide activated pack cementation coating process on pure Mo substrate. The results show that Mo(Si, Al)2 formed as a main phase on the surface and a little amount of Mo5Si3 also formed. The total thickness of coating is tens ofμm at 1373K. During the cyclic oxidation test at high temperature(at about 1323K in air), mullite (3Al2O3.2SiO2) and some SiO2 formed. The addition of Al is beneficial for MoSi2 coating and the Al-doped coating exhibited only a small weight gain and protected the Mo substrate, while the MoSi2 coating without Al suffered a significant weight loss, indicating a loss of volatile MoO3 after cycles.
文摘Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.
文摘类金刚石(Diamond-Like Carbon,DLC)涂层刀具结合了基体强度高、韧性好以及涂层硬度高、耐磨性高的优点,可以有效降低刀-屑间摩擦,提高刀具切削寿命和加工效率。采用直流磁控溅射和等离子体辅助化学气相沉积(Plasma-Assisted Chemical Vapor Deposition,PACVD)法分别在硬质合金刀具基体上制备了单一DLC涂层、Cr/W-DLC/DLC复合涂层和Cr/CrN/DLC复合涂层。对比研究了具有不同Cr/x/DLC过渡层的DLC复合涂层硬质合金刀具加工过共晶结构铝硅合金AC9B的切削性能。研究结果表明:切削铝硅合金时,相对于无涂层硬质合金刀具,DLC涂层硬质合金刀具可以明显降低切削力和切削温度,并且具有更长的刀具切削寿命;Cr/W-DLC/DLC复合涂层硬质合金刀具的切削力最小,切削寿命最长。经显微分析,发现DLC涂层硬质合金刀具切削铝硅合金时的磨损机理主要是黏结磨损和硬质点磨损。