The present article reports on characterization studies performed on amorphized nanostructured Al 6063 alloy powder synthesized by mechanical alloying (MA). The as-milled powder was characterized by X-ray diffraction ...The present article reports on characterization studies performed on amorphized nanostructured Al 6063 alloy powder synthesized by mechanical alloying (MA). The as-milled powder was characterized by X-ray diffraction (XRD) for investigating the development of crystallite nature and determining the different phases of the materials present, scanning electron microscope (SEM) was used for in depth morphological study and High Resolution-transmission electron microscope (HR-TEM) was employed to ensure the development of a nano-structured nature of the Al 6063 matrix. In the present work alloyed powder was milled for 20 h and 40 h at 300 rpm;and 20 h at 700 rpm in a hardened stainless steel medium. Using Williamson-Hall equation;crystallite size, lattice strain and lattice parameter of Al 6063 nanostructure alloy powder was estimated with broadening of XRD peaks. XRD results showed that the crystallite size of Al 6063 alloy powder reached 32 and 53 nm after 20 h at 700 rpm and 40 h at 300 rpm respectively.展开更多
In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 t...In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.展开更多
During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through m...During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through microstructure observation,tensile test,and SEM analyses.Welding parameters were analyzed using finite element simulation.Results indicated that metal welding was remarkably affected by oxide on outer surface of the double billets during continuous extrusion.Degree of oxide breakage on the welding surface increased due to the evident increase in effective strain rate with increasing extrusion speed.The high temperature induced by increased extrusion speed accelerated the formation of metallurgical bonding.A portion of weld seam lines slowly disappeared,and the proportion of the welding interface that failed to reach metallurgical bonding was also gradually reduced.Tensile strength and elongation of the weld specimen increased with the increase of extrusion speed.展开更多
The deformation behavior characteristics of 6063 aluminum alloy were studied experimentally by isothermal compression tests on a Gleeble- 1500 thermal-mechanical simulator. Cylindrical specimens of 14mm in height and ...The deformation behavior characteristics of 6063 aluminum alloy were studied experimentally by isothermal compression tests on a Gleeble- 1500 thermal-mechanical simulator. Cylindrical specimens of 14mm in height and 10mm in diameter were compressed dynamically at temperatures ranging from 473 to 723K and at higher strain rntes from 5 to 30s^-1. It is fouud that the flow curves not only depend on the strain rate and temperature but nlso on the dynamic recovery aud recrystallization behavior. The results show that the flow stress decreased with the increase of temperature, while increased with the increase of strain rate. The discontinuous dynamic recrystallization (DDRX) may take place at a high strain rate of 20s^-1 under the tested conditions. At 30s^-1 , the flow curve can exhibit,flow softening due to the effect of temperature rise that raised the temperature by aboat 32K in less than 0.05s.展开更多
文摘The present article reports on characterization studies performed on amorphized nanostructured Al 6063 alloy powder synthesized by mechanical alloying (MA). The as-milled powder was characterized by X-ray diffraction (XRD) for investigating the development of crystallite nature and determining the different phases of the materials present, scanning electron microscope (SEM) was used for in depth morphological study and High Resolution-transmission electron microscope (HR-TEM) was employed to ensure the development of a nano-structured nature of the Al 6063 matrix. In the present work alloyed powder was milled for 20 h and 40 h at 300 rpm;and 20 h at 700 rpm in a hardened stainless steel medium. Using Williamson-Hall equation;crystallite size, lattice strain and lattice parameter of Al 6063 nanostructure alloy powder was estimated with broadening of XRD peaks. XRD results showed that the crystallite size of Al 6063 alloy powder reached 32 and 53 nm after 20 h at 700 rpm and 40 h at 300 rpm respectively.
基金Project(2012B090600051)supported by Al and Mg Light Alloys Platform on the Unity of Industry,Education and Research Innovation of Guangdong Province,ChinaProject(2012B001)supported by the Ph D Start-up Fund of Guangzhou Research Institute of Non-ferrous Metals,China
文摘In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.
基金financial supports from the National Natural Science Foundation of China(Nos.51705062,51675074)the Department of Education Fund Item of Liaoning Province,China(No.JDL 2019021)。
文摘During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through microstructure observation,tensile test,and SEM analyses.Welding parameters were analyzed using finite element simulation.Results indicated that metal welding was remarkably affected by oxide on outer surface of the double billets during continuous extrusion.Degree of oxide breakage on the welding surface increased due to the evident increase in effective strain rate with increasing extrusion speed.The high temperature induced by increased extrusion speed accelerated the formation of metallurgical bonding.A portion of weld seam lines slowly disappeared,and the proportion of the welding interface that failed to reach metallurgical bonding was also gradually reduced.Tensile strength and elongation of the weld specimen increased with the increase of extrusion speed.
文摘The deformation behavior characteristics of 6063 aluminum alloy were studied experimentally by isothermal compression tests on a Gleeble- 1500 thermal-mechanical simulator. Cylindrical specimens of 14mm in height and 10mm in diameter were compressed dynamically at temperatures ranging from 473 to 723K and at higher strain rntes from 5 to 30s^-1. It is fouud that the flow curves not only depend on the strain rate and temperature but nlso on the dynamic recovery aud recrystallization behavior. The results show that the flow stress decreased with the increase of temperature, while increased with the increase of strain rate. The discontinuous dynamic recrystallization (DDRX) may take place at a high strain rate of 20s^-1 under the tested conditions. At 30s^-1 , the flow curve can exhibit,flow softening due to the effect of temperature rise that raised the temperature by aboat 32K in less than 0.05s.