期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys
1
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Assessing efficacy of standard impregnation techniques on die-cast aluminum alloys using X-ray micro-CT
2
作者 Ajith Bandara Koichi Kan +3 位作者 Katanaga Yusuke Natsuto Soga Akifumi Koike Toru Aoki 《China Foundry》 SCIE EI CAS CSCD 2024年第3期276-286,共11页
Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a... Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals. 展开更多
关键词 nondestructive testing al alloy die-casting vacuum pressure impregnation micro X-ray computed tomography duel-energy X-ray CT
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds
3
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed al alloy
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains
4
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 al–Zn–Mg–Cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Study on Key Joining Technology and Test Method of Steel/Al Hybrid Structure Body-in-White
5
作者 Lijun Han Fuyang Liu Changhua Liu 《Journal of Materials Science and Chemical Engineering》 2024年第4期104-118,共15页
Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward high... Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. . 展开更多
关键词 BODY-IN-WHITE LIGHTWEIGHT Die-Casting al alloy Thermo-Formed Steel Joining
下载PDF
Physical simulation of alloying between copper and aluminum on electrode tip for resistance spot welding of 5A02 aluminum alloy
6
作者 赵菲 吴志生 陈素玲 《China Welding》 EI CAS 2011年第4期46-50,共5页
The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and alu... The applicatio, n of aluminum alloy in the automotive and aviation fields is impeded by the wear and life of electrode for resistance spot welding (RSW). The alloying interaction between the copper electrode and aluminum alloy sheet is the main reason of making electrode life decrease. The test of alloying interaction is difficult because of the transient in RSW of aluminum alloy. In this paper, the process of alloying between copper and aluminum on the electrode tip is simulated with Gleeble-1500 thermal simulation testing machine. The microstructure and composition of the sample of physical simulation for the alloying interaction between the copper electrode and aluminum alloy are analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The results indicate that the alloying reaction between copper and aluminum under the different temperature, pressure and time is mainly the eutectic reaction. The reaction result is the eutectic of ( Al + CuAl2 ) , and then Cu9Al4 forms through solid diffusion between the CuAl2 phase and the copper base metal. 展开更多
关键词 aluminum alloy resistance spot welding Cu/al alloying physical simulation
下载PDF
INFLUENCE OF ALLOYING ELEMENTS(Nb,Mo,V) ON MICROSTRUCTURE OF Ti_3Al BASE ALLOYS 被引量:2
7
作者 SONG Dan DING Jinjun WANG Yandong(Analysis and Testing Center,Northeastern University,Shenyang 110006,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第2期85-88,共4页
The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere i... The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy. 展开更多
关键词 microstructure alloying element Ti_3al base alloy TEM
下载PDF
Effect of Nb and alloying elements on interface reaction between high Nb-containing TiAl alloys and ZrO_2-based ceramic moulds
8
作者 Liang Yang Wen-bin Kan +3 位作者 You-wei Zhang Chun-ling Bao Shi-bing Liu Jun-pin Lin 《China Foundry》 SCIE CAS 2015年第5期362-366,共5页
In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb a... In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb and Mn, Si, Y, B on the interfacial reaction between casting Ti Al alloys and ceramic moulds by SEM, and the elements' distribution in the interface reaction layer by line scanning. The results showed that with an increase in Nb content, the interfacial reaction weakened and the thickness of the reaction layer decreased gradually. The interface reaction thickness of the alloys with Nb content of 6, 7, 8at% were 60, 34 and 26 μm, respectively. Clearly, the addition of 8at% Nb to Ti-45 Al is the best for the thickness of the reaction layer. The addition of Nb would form a Nb-rich film in the reaction layer, which could reduce the solubility of oxygen in the interface, and suppress further diffusion of oxygen to the matrix. If the same content of Mn, Si, Y, or B alloying elements were added respectively to Ti-45Al-8Nb, the thickness of the interface reaction layer from large to small was as follows: Mn>Si>Y>B. The interface reaction thickness increased after 0.5at% Mn added, had no obvious change after 0.5at% Si addition, and decreased after adding 0.5at% Y or B. The introduced elements, which formed a protective film or/and promoted the formation of a dense aluminum oxide layer, would be of benefit to the resistance of interfacial reaction. 展开更多
关键词 high Nb containing Ti al alloys investment casting interface reaction alloying
下载PDF
Ab initio study of chemical effect on structural properties of Ti–Al melts
9
作者 冯运 冯艳 彭海龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期556-560,共5页
We study chemical effect on the structural properties of Ti–Al melts, with the Al concentration systematically changed,via ab initio molecular dynamics simulations. By calculating the partial coordination numbers, we... We study chemical effect on the structural properties of Ti–Al melts, with the Al concentration systematically changed,via ab initio molecular dynamics simulations. By calculating the partial coordination numbers, we find a preferred connection between the nearest neighbors for Al–Ti pairs. This induces an excess Ti coordination in the cluster characterized by local five-fold symmetry in Voronoi tessellation. Structural entropy measured from the diversity of Voronoi polyhedrons shows an intriguing non-monotonic tendency with concentration: it first decreases to a minimum value at Ti_(40)Al_(60), and then increases beyond this concentration. This implies a more ordered local structure induced by the chemical interaction at the intermediate compositions. The spatial correlation among the crystalline-like or the icosahedral-like clusters also exhibits the highest intensity for Al–Ti pairs, verifying the important role played by the chemical interaction in the local structure connectivity. 展开更多
关键词 Ti–al alloys chemical effect atomic structure ab initio simulations
下载PDF
Integrated Computational Materials Engineering for the Development and Design of High Modulus Al Alloys
10
作者 Chengpeng Xue Xinghai Yang +1 位作者 Shuo Wang Junsheng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期443-462,共20页
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys... Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys. 展开更多
关键词 integrated computational materials engineering(ICME) high modulus al alloys
下载PDF
Electronic Structure Effect on Model Cluster for L1_2 Structure of Al_3Ti Intermetallic Compound with an Addition of Alloying Elements Fe, Ni and Cu
11
作者 Senying LIU Rongze HU Dongliang ZHAO and Chongyu WANG(Central Iron and Steel Research Institute, Beijing, 100081, China)(To whom correspondence should be addressed)Ping LUO(National Research Cent or Certified Materials, Beijing, 100013, China)Zhongjie P 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期369-372,共4页
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L... By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds. 展开更多
关键词 FE Electronic Structure Effect on Model Cluster for L12 Structure of al3Ti Intermetallic Compound with an Addition of alloying Elements Fe al Ti Cu
下载PDF
Microstructure and thermal stability of mechanically alloyed Al_3Ti/Al alloy 被引量:1
12
作者 林建国 魏浩岩 黄正 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期266-269,共4页
The microstructure stability of Al 3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstr... The microstructure stability of Al 3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstructure (the grain size is about 0.5 μm). After cycling loaded followed by heat exposure at 350 ℃ for 24 h, no microstructure coarsening of the alloy occurred, which means that the Al 3Ti/Al alloy behaves good microstructure stability at high temperature. The compression yield strength of the alloy reaches up to 247 MPa at 350 ℃. [ 展开更多
关键词 mechanical alloying al 3Ti/al alloy microstructure stability thermal stability
下载PDF
Effect of yttrium on the microstructure of a semi-solid A356 Al alloy 被引量:23
13
作者 LIUZheng HU Yongmei 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期536-540,共5页
The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in t... The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved. 展开更多
关键词 A356 al alloy SEMI-SOLID YTTRIUM low temperature pouring
下载PDF
Research on semi-solid slurry of a hypoeutectic Al-Si alloy prepared by low superheat pouring and weak electromagnetic stirring 被引量:21
14
作者 LIU Zheng MAO Weiming ZHAO Zhengduo 《Rare Metals》 SCIE EI CAS CSCD 2006年第2期177-183,共7页
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve... The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring. 展开更多
关键词 SEMI-SOLID low superheat pouring weak electromagnetic stirring hypoeutectic al-Si alloy A356 al alloy
下载PDF
REHEATING TEMPERATURE CONTRAST AND MICROSTRUCTURES OF 7075 Al ALLOY CAST BY LIQUIDUS SEMI-CONTINUOUS CASTING 被引量:9
15
作者 J. Dong, G.M. Lu and J.Z. CuiThe Key Lab. of Electromagnetic Processing of Material, Ministry of Education, Northeastern University, Shenvane 110004, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期551-555,共5页
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig... In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming. 展开更多
关键词 REHEATING 7075 al alloy liquidus casting micro structure
下载PDF
Microstructure characteristics and mechanical properties of rheocasting 7075 aluminum alloy 被引量:8
16
作者 Yang Bin Mao Weimin Song Xiaojun 《China Foundry》 SCIE CAS 2013年第5期277-281,共5页
The microstructure characteristics and mechanical properties of 7075 aluminum alloy produced by a new rheoforming technique,under as-cast and optimized heat treatment conditions,were investigated.The present rheoformi... The microstructure characteristics and mechanical properties of 7075 aluminum alloy produced by a new rheoforming technique,under as-cast and optimized heat treatment conditions,were investigated.The present rheoforming combined the innovatively developed rheocasting process,named as ICSPC(inverted coneshaped pouring channel)process,and the existing HPDC(high pressure die casting)process.The experimental results show that the ICSPC can be used to prepare high quality semi-solid slurry for the subsequent die casting.Compared with conventional HPDC process,the ICSPC process can improve the microstructures and mechanical properties of the cast tensile samples.An optimized heat treatment results in significant improvement in ultimate tensile strength.However,the ductility of the samples,both under as-cast and optimized heat treatment conditions,are relatively poor. 展开更多
关键词 semi-solid processing 7075 al alloy RHEO-DIECASTING MICROSTRUCTURE mechanical properties
下载PDF
Effects of cryogenic treatment on the thermal physical properties of Cu_(76.12) Al_(23.88) alloy 被引量:13
17
作者 WANG Ping LU Wei +2 位作者 WANG Yuehui LIU Jianhua ZHANG Ruijun 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期644-649,共6页
The thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of Cu76.12Al23.88 alloy before and after cryogenic treatment in the heating temperature range of 25℃ to 600℃ ... The thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of Cu76.12Al23.88 alloy before and after cryogenic treatment in the heating temperature range of 25℃ to 600℃ were measured by thermal constant tester and thermal expansion instrument. The effects of cryogenic treatment on the thermal physical properties of CU76,12A123,88 alloy were investigated by comparing the variation of the thermal parameters before and after cryogenic treatment. The results show that the variation trend of the thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of CU76.12Al23.88 alloy after cryogenic treatment was the same as before. The cryogenic treatment can increase the thermal diffusion coefficient, thermal conductivity, and thermal expansion coeffi- cient of Cu76.12Al23.88 alloy and decrease its heat capacity. The maximum difference in the thermal diffusion coefficient between the before and after cryogenic treatment appeared at 400℃. Similarly, thermal conductivity was observed at 200℃. 展开更多
关键词 Cu76.12al23 88 alloy cryogenic treatment thermal diffusion coefficient thermal expansion coefficient
下载PDF
Continuously extending extrusion forming of semisolid A2017 alloy by SRS process 被引量:8
18
作者 GUANRenguo LIUXianghua 《Rare Metals》 SCIE EI CAS CSCD 2002年第4期271-277,共7页
A self-made single-roll stirring (SRS) machine was used to manufacturesemisolid A2017 alloy, the mechanism of A2017 alloy formation was investigated. It was shown thatA2017 dendrites growing on the rough roll surface ... A self-made single-roll stirring (SRS) machine was used to manufacturesemisolid A2017 alloy, the mechanism of A2017 alloy formation was investigated. It was shown thatA2017 dendrites growing on the rough roll surface are crashed into fragments by the roll, which moveand grow freely then contribute the formation of finer spherical microstruc-ture. When casting at710-750℃, fine and homogeneous spherical or elliptical grains of A2017 alloy were obtained.Extending forming mould has been designed and was installed at the exit of roll-shoe gap. A2017alloy was formed by extending continuously at the semisolid state on SRS machine. Throughcontrolling pouring temperature, semisolid forming and extending extrusion was combined organically.A2017 product with fine surface and rectangular transection of 14 mm x 25 mm was obtained. Bycontrast to the national standard, the fracture strength and elongation of A2017 products producedfrom extending semisolid extrusion have been improved with an increase of 100 MPa and 29%,respectively. 展开更多
关键词 SEMISOLID al base alloy extending forming SRS process microstructure PROPERTY
下载PDF
Crystal Nucleation and Growth of Al-based Alloys Produced by Electrolysis 被引量:10
19
作者 ZhiyongLIU MingxingWANG +3 位作者 YonggangWENG TianfuSONG YupingHUO JingpeiXIE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期427-430,共4页
The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomic Ti/AI ratios of the nuclei and the distribution of Ti at certain points are analyzed by po... The nucleation and growth of grains in a series of Al-based alloys produced by electrolysis are observed under SEM. The atomic Ti/AI ratios of the nuclei and the distribution of Ti at certain points are analyzed by point EDS. The particles in different atomic Ti/AI ratios might act as the nuclei of α-Al. At the early stage of growth, the spherical Ti-enriched regions might form around these particles within very limited temperature ranges in which the reactions such as the peritectic reactions etc occur. At the latter stage of growth, the dendrites freely develop in the radial orientations, and the concentration of Ti decreases linearly along the dendrite arm and becomes negligible in the region near the periphery of the dendrite. It is believed that the nucleation is closely related with the number and dispersion of primary spherical areas in the melts, and the segregation of Ti leads to the free growth of dendrite, which is necessary for the formation of equiaxial grains. 展开更多
关键词 al based alloys NUCLEATION Spherical growth Free dendrite growth
下载PDF
Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion 被引量:9
20
作者 Kun Sheng Liwei Lu +2 位作者 Yao Xiang Min Ma Zhiqiang Wu 《Journal of Magnesium and Alloys》 SCIE 2019年第4期717-724,共8页
A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation.The compound extrusion plates have cracked at 290℃ and 3 mm/s.According to this pheno... A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation.The compound extrusion plates have cracked at 290℃ and 3 mm/s.According to this phenomenon,a model was built to investigate the crack generation and development between the 6061 Al and AZ31 Mg alloy during the compound extrusion process by DEFORM-3D.The cracking behavior of the Mg/Al composite rod with a soft Mg AZ31 core and a hard Al 6061 sleeve were systematically studied to disclose the influence of microstructure on crack in the different regions.The simulation results show that the distribution of strain and velocity has significant differences due to the influence of dies structure and material properties at different locations in the same region.The experimental results show that in the same conditions,there are differences in recrystallization and texture weakening of AZ31 Mg alloys and 6061 Al alloy,which are important factors for the formation of crack.Both the Mg layer and the Al layer have a homogeneous microstructure in the region d. 展开更多
关键词 AZ31 Mg alloy 6061 al alloy Compound extrusion CRACK EBSD
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部