In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, whi...In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.展开更多
Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and ...Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.展开更多
利用Fe Ni Al Co Ti多元扩散偶研究了界面处的α1+α2+(FeCo)2Ti三相在800℃下的相平衡,通过扩散偶界面两侧的相成分分析获知,Co在α2与α1相之间的分配比约为1 1,Ti在α2与α1相之间的分配比约为2 5.在Fe Ni Al合金中同时添加Co与Ti时...利用Fe Ni Al Co Ti多元扩散偶研究了界面处的α1+α2+(FeCo)2Ti三相在800℃下的相平衡,通过扩散偶界面两侧的相成分分析获知,Co在α2与α1相之间的分配比约为1 1,Ti在α2与α1相之间的分配比约为2 5.在Fe Ni Al合金中同时添加Co与Ti时,其在固溶体α2与α1相之间的分配特征与Fe Ni Al Co和Fe Ni Al Ti系中一样,Co与Ti在α2与α1相之间的分配比仍均大于1.展开更多
In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ...In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.展开更多
Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product...Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon.展开更多
The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy ...The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.展开更多
For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concent...For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.展开更多
基金Supported by the Henan Outstanding Youth Science Fund (0612002400)
文摘In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.
基金Project(2005CB623702)supported by the Major State Basic Research and Development Program of ChinaProject(20476107) supported by the National Natural Science Foundation of China
文摘Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.
文摘利用Fe Ni Al Co Ti多元扩散偶研究了界面处的α1+α2+(FeCo)2Ti三相在800℃下的相平衡,通过扩散偶界面两侧的相成分分析获知,Co在α2与α1相之间的分配比约为1 1,Ti在α2与α1相之间的分配比约为2 5.在Fe Ni Al合金中同时添加Co与Ti时,其在固溶体α2与α1相之间的分配特征与Fe Ni Al Co和Fe Ni Al Ti系中一样,Co与Ti在α2与α1相之间的分配比仍均大于1.
基金supported by the National Natural Science Foundation of China (No.21206108)Tianjin Municipal Science and Technology Commission (No.14JCYBJC21200)
文摘In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.
基金the State Key Fundamental Research Program(Ministry of Science and Technology of China,No.2011CBA00501)Shanghai Municipal Science and Technology Commission,China(Grant No:11DZ1200300)the Foundation of State Key Laboratory of Coal Conversion(Grant No:1112610)
文摘Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon.
基金Funded by the National Natural Science Foundation of China(No.50274047 and 50304001) ,BeijingJiaotong University Founda-tion and the Foundation of the Ministry of Education of China ,andthe National Science Foundation of Beijing
文摘The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.
基金financial supports from the National Key Research and Development Program of China(No.2022YFB3504501)the National Natural Science Foundation of China(Nos.52274355,91962211)the Gansu Province Science and Technology Major Special Project,China(No.22ZD6GD061)。
文摘For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.