In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling ...The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.展开更多
The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si com...The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.展开更多
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo...The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.展开更多
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit...In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.展开更多
The solidification microstructure and mechanical properties of hypoeutectic Al-10Mg_(2)Si cast alloys with different Cu contents and 0.45 wt.% Er were investigated using an optical microscope, scanning electron micros...The solidification microstructure and mechanical properties of hypoeutectic Al-10Mg_(2)Si cast alloys with different Cu contents and 0.45 wt.% Er were investigated using an optical microscope, scanning electron microscope, and an electronic universal testing machine. Results showed that Cu and Er could significantly reduce the grain size of the eutectic Mg;Si phase from 15.4 μm for the base alloy to 5.8 μm for the alloy with 1.5 wt.% Cu and 0.45 wt.% Er.Meanwhile, the needle-like β-Al5Fe Si phase was modified to fine sized irregular shaped Cu, Er and Fe-rich particles with the additions of Cu and Er. The strength and ductility of the Al-10Mg_(2)Si as-cast alloys were simultaneously improved by the additions of Cu and Er, and the ultimate tensile strength, yield strength and elongation increase from 223 MPa,136 MPa and 2.1% to 337 MPa, 169 MPa and 4.7%, respectively. The heterogeneous nucleation of Mg_(2)Si on Al P was avoided by forming Cu, Er and P-containing phases, due to the additions of Cu and Er. Moreover, the Cu and Er atomic clusters and their intermetallic segregated on the surface of the eutectic Mg_(2)Si and inhibited the growth of the eutectic Mg_(2)Si, which were responsible for the modification of the eutectic Mg_(2)Si.展开更多
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
文摘The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.
基金financially supported by the Science and Technology Program of Guangzhou,China(No.2015B090926013)Postdoctoral Science Foundation of China(No.2015M581348)+1 种基金Postdoctoral Science Foundation of Northeastern University(No.20150302)the Doctoral Foundation of Chinese Ministry of Education(No.20130042130001)
文摘The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.
基金financially supported by the National Natural Youth Science Foundation of China (No. 50901038)the Key Laboratory Foundation of Liaoning Provincial Committee of Education (Nos. 20060394 and 2009S053)
文摘The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.
基金supported by the National Natural Science Foundation of China(No.50671044)the Sci-tech Development Project of Jilin Province of China(No.20070506)
文摘In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.
基金Project(51971106) supported by the National Natural Science Foundation of ChinaProject(GJJ191094) supported by the Education Department of Jiangxi Province,China+2 种基金Project(PA2019GDZC0096) supported by Fundamental Research Funds for the Central Universities of ChinaProject(2019-MS-171) supported by the Liaoning Natural Science Foundation,ChinaProject supported by Programs for Liaoning Innovative Talents/Groups and Liaoning Distinguished Professors,China。
文摘The solidification microstructure and mechanical properties of hypoeutectic Al-10Mg_(2)Si cast alloys with different Cu contents and 0.45 wt.% Er were investigated using an optical microscope, scanning electron microscope, and an electronic universal testing machine. Results showed that Cu and Er could significantly reduce the grain size of the eutectic Mg;Si phase from 15.4 μm for the base alloy to 5.8 μm for the alloy with 1.5 wt.% Cu and 0.45 wt.% Er.Meanwhile, the needle-like β-Al5Fe Si phase was modified to fine sized irregular shaped Cu, Er and Fe-rich particles with the additions of Cu and Er. The strength and ductility of the Al-10Mg_(2)Si as-cast alloys were simultaneously improved by the additions of Cu and Er, and the ultimate tensile strength, yield strength and elongation increase from 223 MPa,136 MPa and 2.1% to 337 MPa, 169 MPa and 4.7%, respectively. The heterogeneous nucleation of Mg_(2)Si on Al P was avoided by forming Cu, Er and P-containing phases, due to the additions of Cu and Er. Moreover, the Cu and Er atomic clusters and their intermetallic segregated on the surface of the eutectic Mg_(2)Si and inhibited the growth of the eutectic Mg_(2)Si, which were responsible for the modification of the eutectic Mg_(2)Si.