Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work st...Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work studied the fretting corrosion of Ti6Al4V‒CoCrMo pair in calf serum solution.We established this material pair’s running condition fretting map(RCFM)regarding load and displacement,and revealed the damage mechanism of this material pair in various fretting regimes,namely partial slip regime(PSR),mixed fretting regime(MFR),and gross slip regime(GSR).The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion.Adhesive wear(material transfer)also existed in MFR.The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR,while no apparent damage in PSR.Furthermore,a dense composite material layer with high hardness was formed in the middle contacting area in GSR,which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys.Finally,the ion concentration maps for Ti and Co ions were constructed,which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
Accurate material constitutive model is considered highly necessary to perform finite element simulation and analysis.However,it is difficult to establish the material constitutive model because of uncertainty of math...Accurate material constitutive model is considered highly necessary to perform finite element simulation and analysis.However,it is difficult to establish the material constitutive model because of uncertainty of mathematical relationship and constraint of existing experimental condition.At present,there exists considerable gap between finite element simulation result and actual cutting process.Particular emphases were put on investigating the correlation between "single factor" material constitutive model parameters and temperature for Ti6Al4V alloy,and also establishment of material constitutive model for this kind of material.Theoretical analyses based on dislocation theory and material functional relations showed that material model was deeply affected by variation temperature.By the least squares best fit to the available quasi-static and high-speed impact compression experiment data,material parameters at various temperatures were found.Experimental curves analyses and material parameters comparison showed that the "single factor" material constitutive model parameters were temperature dependent.Using the mathematical mapping between material parameters and temperature,"single factor" material constitutive model of Ti6Al4V alloy was established,which was proven to be right by comparing with experimental measurements.This work makes clear that the "single factor" material constitutive model parameters of Ti6Al4V alloy are temperature dependent.At the same time,an accurate material constitutive model is established,which helps to optimize cutting process and control machining distortion for Ti6Al4V alloy aerospace parts.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52035012 and 52275215)the Natural Science Foundation of Sichuan Province(No.2022NSFSC1940).
文摘Ti6Al4V alloy‒CoCrMo alloy pair is commonly applied for modular head‒neck interfaces for artificial hip joint.Unfortunately,the fretting corrosion damage at this interface seriously restricts its lifespan.This work studied the fretting corrosion of Ti6Al4V‒CoCrMo pair in calf serum solution.We established this material pair’s running condition fretting map(RCFM)regarding load and displacement,and revealed the damage mechanism of this material pair in various fretting regimes,namely partial slip regime(PSR),mixed fretting regime(MFR),and gross slip regime(GSR).The damage mechanism of Ti6Al4V alloy was mainly abrasive wear induced by CoCrMo alloy and tribocorrosion.Adhesive wear(material transfer)also existed in MFR.The damage mechanism of CoCrMo alloy was mainly abrasive wear induced by metal oxides and tribocorrosion in GSR and MFR,while no apparent damage in PSR.Furthermore,a dense composite material layer with high hardness was formed in the middle contacting area in GSR,which reduced the corrosion and wear of Ti alloys and exacerbated damage to Co alloys.Finally,the ion concentration maps for Ti and Co ions were constructed,which displayed the transition in the amount of released Ti and Co ions under different displacements and loads.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
基金supported by National Natural Science Foundation of China (Grant No. 50435020)Shandong Provincial Postdoctoral Foundation of China (Grant No. 200703080)
文摘Accurate material constitutive model is considered highly necessary to perform finite element simulation and analysis.However,it is difficult to establish the material constitutive model because of uncertainty of mathematical relationship and constraint of existing experimental condition.At present,there exists considerable gap between finite element simulation result and actual cutting process.Particular emphases were put on investigating the correlation between "single factor" material constitutive model parameters and temperature for Ti6Al4V alloy,and also establishment of material constitutive model for this kind of material.Theoretical analyses based on dislocation theory and material functional relations showed that material model was deeply affected by variation temperature.By the least squares best fit to the available quasi-static and high-speed impact compression experiment data,material parameters at various temperatures were found.Experimental curves analyses and material parameters comparison showed that the "single factor" material constitutive model parameters were temperature dependent.Using the mathematical mapping between material parameters and temperature,"single factor" material constitutive model of Ti6Al4V alloy was established,which was proven to be right by comparing with experimental measurements.This work makes clear that the "single factor" material constitutive model parameters of Ti6Al4V alloy are temperature dependent.At the same time,an accurate material constitutive model is established,which helps to optimize cutting process and control machining distortion for Ti6Al4V alloy aerospace parts.