Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization...Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization, corrosion potential (φcor ) and electrochemical impedance spectroscopy techniques (EIS). The impedance data were fitted to appropriate equivalent circuits to explain the different electrochemical processes occurring at the electrode-electrolyte interface. The results indicate that Al-Zn-Si-RE coating reveals the similar polarization behavior as Zn-15Al coating. The coating has no passive region in the anodic polarization, but far lower corrosion current and much higher corrosion potential. Al-Zn-Si-RE coating provides effective sacrificial protection for steel substrate and the sacrificial anodic protection plays dominant role during the immersion process. In addition, theφcor evolution and EIS plots indicate that the corrosion process can be divided into five stages: pitting-dissolution-redeposition, activation corrosion, cathodic protection, physical barriers and the coating failure.展开更多
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s...Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials.展开更多
As an alternative to Li-ion batteries,aqueous Zn batteries have gained attention due to the abundance of Zn metal,low reduction potential(-0.76 V vs.standard hydrogen electrode),and high theoretical capacity(820 mAh g...As an alternative to Li-ion batteries,aqueous Zn batteries have gained attention due to the abundance of Zn metal,low reduction potential(-0.76 V vs.standard hydrogen electrode),and high theoretical capacity(820 mAh g^(-1))of multivalent Zn2+ion.However,the growth of Zn dendrites and the formation of irreversible surface reaction byproducts pose challenges for ensuring a long battery lifespan and commercialization.Herein,the Cu foil coated with a single-walled carbon nanotube(SWCNT)layer using a facile doctor blade casting method is utilized.The SWCNT-coated Cu foil demonstrates a significantly longer battery lifespan compared to the bare Cu in the half-cell tests.Through operando optical microscopy imaging,we are able to provide intuitive evidence that Zn deposition occurs between the carbon nanotube(CNT)coating and Cu substrate,in agreement with the computational results.Also,with various imaging techniques,the flat morphology and homogeneous distribution of Zn beneath the SWCNT layer are demonstrated.In addition,the full-cell using CNT-coated Cu exhibits a long cycle life compared to the control group,thereby demonstrating improved electrochemical performance with limited Zn for the cycling process.展开更多
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea...In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.展开更多
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
A superhydrophobic Zn−Fe alloy coating was prepared on the surface of a reactive magnesium alloy using a simple,low-cost,eco-friendly method.Firstly,the Zn−Fe coating was obtained in a neutral glycerol Zn−Fe plating s...A superhydrophobic Zn−Fe alloy coating was prepared on the surface of a reactive magnesium alloy using a simple,low-cost,eco-friendly method.Firstly,the Zn−Fe coating was obtained in a neutral glycerol Zn−Fe plating solution,which is green,compositionally stable,and non-corrosive to the equipment.And then the superhydrophobic surface with a flower-like microstructure was obtained by grafting myristic acid onto the Zn−Fe coating via a chelation reaction.The water contact angle was>150°and the rolling angle was 3°−4°.The corrosion rate of the two groups of superhydrophobic magnesium alloy samples with electrodeposition time of 30 and 50 min,respectively,was reduced by about 87%compared to that of the bare magnesium alloy.The prepared superhydrophobic coatings exhibit high performance in self-cleaning,abrasion resistance,and corrosion resistance.展开更多
Zn-Al coatings can provide protection to exposed steel parts in most environments. For this reason, the investigation of Zn-Al coatings become very popular in recent years. In order to study the microstructures and pr...Zn-Al coatings can provide protection to exposed steel parts in most environments. For this reason, the investigation of Zn-Al coatings become very popular in recent years. In order to study the microstructures and properties of mechanically deposited Zn-Al coating, zinc powders and aluminum powders were used to deposit Zn-AI coating by mechanical plating. The microstruetures, phase constitutes and compositions of the coating were observed and analyzed with optical microscopy (OM), scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). The results of observation show that the coating consists of almost spherically shaped zinc particles point contacting with each other; the coatings are composed of zinc particles, aluminum particles, interstice, and tin; extra fine zinc powders and some smaller interspersed inclusions are positioned in the interstices. Porosity and thickness of the coating were tested by ferroxyl test and magnetic method. The corrosion resistance of coatings was studied by neutral salt spraying test(NSS), immersion test and electrochemical polarization. It is found that the thickness of the coating dose lacks uniformity, with an uneven thickness distribution and an average variation of approximately 2-5gm; the coating can afford cathodic protection to the steel substrate; the corrosion resistance of Zn-Al coatings is better than that of the mechanically plated zinc coatings with same thickness. These conclusions can be applied to improve anti-corrosion performance by mechanically deposit Zn-Al coatings.展开更多
Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited on to a steel substrate by the successive deposition of zinc and Zn-Ni alloy sublayers from dual baths. The coated sampl...Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited on to a steel substrate by the successive deposition of zinc and Zn-Ni alloy sublayers from dual baths. The coated samples were evaluated in terms of the surface appearance, surface and cross-sectional morphologies, as well as corrosion resistance. The microstructural characteristics that were examined using the field emission gun scanning electron microscopy (FEGSEM) confirmed the layered structure, grain refinement of the zinc and Zn-Ni alloy CMM coatings, and revealed the existence of microcracks caused by the internal stress in the thick Zn-Ni alloy sublayers. The corrosion resistance that was evaluated by means of the salt spray test shows that the zinc and Zn-Ni alloy CMM coatings were more corrosion-resistant than the monolithic coatings of zinc or Zn-Ni alloy of the same thickness. The possible reasons for the better protective performance of Zn-Ni/Zn CMM coatings were given on the basis of the analysis on the micrographic features of zinc and Zn-Ni alloy CMM eoatings after the corrosion test. A probable corrosion mechanism of zinc and Zn-Ni alloy CMM coatings was also proposed.展开更多
Based on the advanced integrated technology of materials preparation and formation, a new pattern Zn-Al-Mg-RE anti-corrosion coating for steel structure sustainable design was manufactured by cored wires and high velo...Based on the advanced integrated technology of materials preparation and formation, a new pattern Zn-Al-Mg-RE anti-corrosion coating for steel structure sustainable design was manufactured by cored wires and high velocity arc spraying (HVAS) technologies. The developments of thermally sprayed coatings for steel structure protection were described. Based on Al, Zn, Zn-Al and Zn-Al-Mg coatings, the anti-corrosion properties of new-pattern Zn-Al-Mg-RE coating were evaluated through electrochemical methods including electrochemical polarization and electrochemical impedance spectroscopy (EIS) coupled with SEM and XRD. The models of Zn-Al-Mg-RE coating undergoing corrosion with the initial pinhole defect and the latter with accelerated products were also discussed. The results show that Zn-Al-Mg-RE coating exhibites excellent corrosion resistance for long-term immersion, which is helpful for the sustainable design of steel structure in aggressive corrosion conditions. And the corrosion products seem to possess certain self-sealing function.展开更多
Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because...Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because the rudder of ships stern are exposed to very severe corrosive environment such as tides, speeds of ships, cavitations and erosion corrosion. The environmental factors such as cavitation and corrosion will cause damage for materials with the shock wave by the creation and destruction of bubble. To solve these problems, the cavitation and electrochemical experiments are executed for thermal spray coating with Al-Zn alloy wire material. Thereafter, and sealed specimens with F-Si sealer on Al-Zn alloy coated specimen are executed to improve electrochemical and anti-cavitation characteristics in sea water. The application of fluorine silicon sealing after spray coating of 15%Al-85%Zn seems to be appropriate not only in static environment but also in dynamic environment.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electr...Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.展开更多
The effect of mischmetal addition on high temperature oxidation resistance of 55wt% Al43.4 wt% Zn-1 .6wt% Si alloy hot-dip coatings has been investigated. It is found that rare earth addition improves high temperature...The effect of mischmetal addition on high temperature oxidation resistance of 55wt% Al43.4 wt% Zn-1 .6wt% Si alloy hot-dip coatings has been investigated. It is found that rare earth addition improves high temperature oxidation resistance of the coatings. The oxidation tests at 800℃, 100 h and 1000℃, 50 h show that the coating with addition of 0. 1 % RE has the best properties. The morphology of oxide scale and element distribution of coating section were analysed by SEM, EPMA and XRD. It is indicated that mischmetal addition improves the adhesion between oxide scale and coating substrate, and spalling resistance of the scale is also improved with the addition of RE. Additionally, RE controls the degeneracy speed of Al-content in the coatings and inhibits the growth of Fe-Al intermetallic compound. For this reason, higher Al-content is kept in all the coatings with RE addition.展开更多
Optical microscope(OM),scanning electron microscope(SEM),energy dispersive spectrometer (EDS) and X-ray Diffraction(XRD) were used to study the effects of rare earth on the microstructural characteristics of 55%Al-Zn-...Optical microscope(OM),scanning electron microscope(SEM),energy dispersive spectrometer (EDS) and X-ray Diffraction(XRD) were used to study the effects of rare earth on the microstructural characteristics of 55%Al-Zn-1.6%Si hot -dip coatings on steel.The results of OM,SEM and EDS showed that by adding RE into the 55%Al-Zn-1.6%Si bath,the saw-toothed shape of intermetallic reaction layer of coating became smooth,and the thickness of the overlay and intermetallic reaction layer decreased.The XRD results revealed that the intermetallic reaction layer was comprised of two different regions,a bright phase closest to the steel substrate with phases of Fe_2Al_3 and a dark phase closest to the metallic coating with phases of FeAl_3/α-Fe-Al-Si.展开更多
A novel Zn Al co cementation coating was obtained by a pack cementation method. This coating possesses a two layered structure. The outer layer is mainly composed of Fe 2Al 5 and FeAl intermetallics with a small amoun...A novel Zn Al co cementation coating was obtained by a pack cementation method. This coating possesses a two layered structure. The outer layer is mainly composed of Fe 2Al 5 and FeAl intermetallics with a small amount of Zn, and the inner layer consists of Zn, Fe and a small amount of Al. The corrosion erosion resistance of Zn Al co cementation coatings on carbon steel was studied by a rotary corrosion method in various NaCl and H 2S containing solutions and relevant SiO 2 containing media. The experimental results are compared with those of carbon steels and the sherardizing and aluminizing coatings, showing that the Zn Al co cementation coatings have excellent corrosion erosion resistance in various aqueous media.展开更多
Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited from dual baths. The coated samples were evaluated in terms of surface appearance, surface and cross-sectional morpholog...Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited from dual baths. The coated samples were evaluated in terms of surface appearance, surface and cross-sectional morphologies, as well as corrosion resistance. The results obtained from the salt spray test show that the zinc and Zn-Ni alloy CMM coatings are more corrosion-resistant than the monolithic coatings of zinc or Zn-Ni alloy alone with a similar thickness. The corrosion potential measurement and anodic polarisation tests were undertaken to examine the probable corrosion mechanisms of zinc and Zn-Ni alloy CMM coatings. Analysis on the micrographic features of zinc and Zn-Ni alloy CMM coatings after the corrosion test explains the probable reasons why the Zn-Ni/Zn CMM coatings have a better protective performance. Surface morphologies and compositional analysis of the remaining coating material of Zn-Ni alloy deposit after the corrosion test confirms the dezincification mechanism of the Zn-Ni alloy deposit during the corrosion process.展开更多
In this study,the effect of Pb content on the surface morphology and salt spray corrosion resistance of hot dip Zn-AI-Mg coatings was investigated. The results showed that the coating surface easily formed small grain...In this study,the effect of Pb content on the surface morphology and salt spray corrosion resistance of hot dip Zn-AI-Mg coatings was investigated. The results showed that the coating surface easily formed small grains of zinc spangle structures and that the salt spray con'osion resistance of the coating decreased when Pb content was greater than 0.01%. The microstructure and energy dispersive spectrum analysis of surface and cross-sectional areas was performed by scanning electron microscopy. Pb content present in the coating was analyzed by glow discharge spectrum. The results showed that the distribution of Pb in the coating was not uniform. The Pb content was segregated on the surface and at the cross-section of the Zn-A1-MgZn2 ternary eutectic structure,especially,on the surface of the Zn-A1-MgZn2 ternary eutectic structure.展开更多
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
基金Project(CXLX12_0149)supported by Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(BA2011029)supported by Special Fund of Transformation of Sci-tech Achievements of Jiangsu Province,China+1 种基金Project(BY2011101)supported by the Creative Fund of Combination of Industry,Academia and Research of Jiangsu Province,China-Prospective Joint Research ProjectProject(kfjj120217)supported by Open Funds of NUAA Innovation Base(Laboratory)for Graduate Students
文摘Al-Zn-Si-RE coating with high Al content was deposited on mild steel by arc spraying. The electrochemical behavior of Al-Zn-Si-RE coating in 3.5%NaCl solution was systematically studied by potentiodynamic polarization, corrosion potential (φcor ) and electrochemical impedance spectroscopy techniques (EIS). The impedance data were fitted to appropriate equivalent circuits to explain the different electrochemical processes occurring at the electrode-electrolyte interface. The results indicate that Al-Zn-Si-RE coating reveals the similar polarization behavior as Zn-15Al coating. The coating has no passive region in the anodic polarization, but far lower corrosion current and much higher corrosion potential. Al-Zn-Si-RE coating provides effective sacrificial protection for steel substrate and the sacrificial anodic protection plays dominant role during the immersion process. In addition, theφcor evolution and EIS plots indicate that the corrosion process can be divided into five stages: pitting-dissolution-redeposition, activation corrosion, cathodic protection, physical barriers and the coating failure.
基金financial support from the Natural Science Foundation of Shandong Province (ZR2022QB140)the PhD Initiation Program of Liaocheng University (318052138)the Natural Science Foundation of Shandong Province (ZR2023MB002 and ZR2021MB114)。
文摘Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials.
基金Ministry of Science and ICT,South Korea,Grant/Award Number:C310200National Research Foundation of Korea(NRF),Grant/Award Number:2020R1C1C1012308。
文摘As an alternative to Li-ion batteries,aqueous Zn batteries have gained attention due to the abundance of Zn metal,low reduction potential(-0.76 V vs.standard hydrogen electrode),and high theoretical capacity(820 mAh g^(-1))of multivalent Zn2+ion.However,the growth of Zn dendrites and the formation of irreversible surface reaction byproducts pose challenges for ensuring a long battery lifespan and commercialization.Herein,the Cu foil coated with a single-walled carbon nanotube(SWCNT)layer using a facile doctor blade casting method is utilized.The SWCNT-coated Cu foil demonstrates a significantly longer battery lifespan compared to the bare Cu in the half-cell tests.Through operando optical microscopy imaging,we are able to provide intuitive evidence that Zn deposition occurs between the carbon nanotube(CNT)coating and Cu substrate,in agreement with the computational results.Also,with various imaging techniques,the flat morphology and homogeneous distribution of Zn beneath the SWCNT layer are demonstrated.In addition,the full-cell using CNT-coated Cu exhibits a long cycle life compared to the control group,thereby demonstrating improved electrochemical performance with limited Zn for the cycling process.
基金funded by the National Natural Science Foundation of China(Nos.52271102,52075198 and 52205359)。
文摘In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
基金supports from the National Natural Science Foundation of China(No.22178242).
文摘A superhydrophobic Zn−Fe alloy coating was prepared on the surface of a reactive magnesium alloy using a simple,low-cost,eco-friendly method.Firstly,the Zn−Fe coating was obtained in a neutral glycerol Zn−Fe plating solution,which is green,compositionally stable,and non-corrosive to the equipment.And then the superhydrophobic surface with a flower-like microstructure was obtained by grafting myristic acid onto the Zn−Fe coating via a chelation reaction.The water contact angle was>150°and the rolling angle was 3°−4°.The corrosion rate of the two groups of superhydrophobic magnesium alloy samples with electrodeposition time of 30 and 50 min,respectively,was reduced by about 87%compared to that of the bare magnesium alloy.The prepared superhydrophobic coatings exhibit high performance in self-cleaning,abrasion resistance,and corrosion resistance.
基金supported by National Natural Science Foundation of China (Grant No. 50561003)Foundation of Yunnan Provincial Education Department of China (Grant No.07Y41414)
文摘Zn-Al coatings can provide protection to exposed steel parts in most environments. For this reason, the investigation of Zn-Al coatings become very popular in recent years. In order to study the microstructures and properties of mechanically deposited Zn-Al coating, zinc powders and aluminum powders were used to deposit Zn-AI coating by mechanical plating. The microstruetures, phase constitutes and compositions of the coating were observed and analyzed with optical microscopy (OM), scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). The results of observation show that the coating consists of almost spherically shaped zinc particles point contacting with each other; the coatings are composed of zinc particles, aluminum particles, interstice, and tin; extra fine zinc powders and some smaller interspersed inclusions are positioned in the interstices. Porosity and thickness of the coating were tested by ferroxyl test and magnetic method. The corrosion resistance of coatings was studied by neutral salt spraying test(NSS), immersion test and electrochemical polarization. It is found that the thickness of the coating dose lacks uniformity, with an uneven thickness distribution and an average variation of approximately 2-5gm; the coating can afford cathodic protection to the steel substrate; the corrosion resistance of Zn-Al coatings is better than that of the mechanically plated zinc coatings with same thickness. These conclusions can be applied to improve anti-corrosion performance by mechanically deposit Zn-Al coatings.
文摘Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited on to a steel substrate by the successive deposition of zinc and Zn-Ni alloy sublayers from dual baths. The coated samples were evaluated in terms of the surface appearance, surface and cross-sectional morphologies, as well as corrosion resistance. The microstructural characteristics that were examined using the field emission gun scanning electron microscopy (FEGSEM) confirmed the layered structure, grain refinement of the zinc and Zn-Ni alloy CMM coatings, and revealed the existence of microcracks caused by the internal stress in the thick Zn-Ni alloy sublayers. The corrosion resistance that was evaluated by means of the salt spray test shows that the zinc and Zn-Ni alloy CMM coatings were more corrosion-resistant than the monolithic coatings of zinc or Zn-Ni alloy of the same thickness. The possible reasons for the better protective performance of Zn-Ni/Zn CMM coatings were given on the basis of the analysis on the micrographic features of zinc and Zn-Ni alloy CMM eoatings after the corrosion test. A probable corrosion mechanism of zinc and Zn-Ni alloy CMM coatings was also proposed.
文摘Based on the advanced integrated technology of materials preparation and formation, a new pattern Zn-Al-Mg-RE anti-corrosion coating for steel structure sustainable design was manufactured by cored wires and high velocity arc spraying (HVAS) technologies. The developments of thermally sprayed coatings for steel structure protection were described. Based on Al, Zn, Zn-Al and Zn-Al-Mg coatings, the anti-corrosion properties of new-pattern Zn-Al-Mg-RE coating were evaluated through electrochemical methods including electrochemical polarization and electrochemical impedance spectroscopy (EIS) coupled with SEM and XRD. The models of Zn-Al-Mg-RE coating undergoing corrosion with the initial pinhole defect and the latter with accelerated products were also discussed. The results show that Zn-Al-Mg-RE coating exhibites excellent corrosion resistance for long-term immersion, which is helpful for the sustainable design of steel structure in aggressive corrosion conditions. And the corrosion products seem to possess certain self-sealing function.
文摘Most hulls of the ships are protected with paintings, sacrificial anode, and impressed current cathodic protection methods against corrosion problems. However, these conventional methods are not very effective because the rudder of ships stern are exposed to very severe corrosive environment such as tides, speeds of ships, cavitations and erosion corrosion. The environmental factors such as cavitation and corrosion will cause damage for materials with the shock wave by the creation and destruction of bubble. To solve these problems, the cavitation and electrochemical experiments are executed for thermal spray coating with Al-Zn alloy wire material. Thereafter, and sealed specimens with F-Si sealer on Al-Zn alloy coated specimen are executed to improve electrochemical and anti-cavitation characteristics in sea water. The application of fluorine silicon sealing after spray coating of 15%Al-85%Zn seems to be appropriate not only in static environment but also in dynamic environment.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
基金financially supported by the National Natural Science Foundation of China(No.41706080)the Basic Frontier Science Research Program of the Chinese Academy of Sciences(No.ZDBS-LYDQC025)+1 种基金the Strategic Leading Science and Technology Program of the Chinese Academy of Sciences(No.XDA13040403)the Shandong Key Laboratory of Corrosion Science。
文摘Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.
文摘The effect of mischmetal addition on high temperature oxidation resistance of 55wt% Al43.4 wt% Zn-1 .6wt% Si alloy hot-dip coatings has been investigated. It is found that rare earth addition improves high temperature oxidation resistance of the coatings. The oxidation tests at 800℃, 100 h and 1000℃, 50 h show that the coating with addition of 0. 1 % RE has the best properties. The morphology of oxide scale and element distribution of coating section were analysed by SEM, EPMA and XRD. It is indicated that mischmetal addition improves the adhesion between oxide scale and coating substrate, and spalling resistance of the scale is also improved with the addition of RE. Additionally, RE controls the degeneracy speed of Al-content in the coatings and inhibits the growth of Fe-Al intermetallic compound. For this reason, higher Al-content is kept in all the coatings with RE addition.
文摘Optical microscope(OM),scanning electron microscope(SEM),energy dispersive spectrometer (EDS) and X-ray Diffraction(XRD) were used to study the effects of rare earth on the microstructural characteristics of 55%Al-Zn-1.6%Si hot -dip coatings on steel.The results of OM,SEM and EDS showed that by adding RE into the 55%Al-Zn-1.6%Si bath,the saw-toothed shape of intermetallic reaction layer of coating became smooth,and the thickness of the overlay and intermetallic reaction layer decreased.The XRD results revealed that the intermetallic reaction layer was comprised of two different regions,a bright phase closest to the steel substrate with phases of Fe_2Al_3 and a dark phase closest to the metallic coating with phases of FeAl_3/α-Fe-Al-Si.
文摘A novel Zn Al co cementation coating was obtained by a pack cementation method. This coating possesses a two layered structure. The outer layer is mainly composed of Fe 2Al 5 and FeAl intermetallics with a small amount of Zn, and the inner layer consists of Zn, Fe and a small amount of Al. The corrosion erosion resistance of Zn Al co cementation coatings on carbon steel was studied by a rotary corrosion method in various NaCl and H 2S containing solutions and relevant SiO 2 containing media. The experimental results are compared with those of carbon steels and the sherardizing and aluminizing coatings, showing that the Zn Al co cementation coatings have excellent corrosion erosion resistance in various aqueous media.
文摘Zinc and Zn-Ni alloy compositionally modulated multilayer (CMM) coatings were electrodeposited from dual baths. The coated samples were evaluated in terms of surface appearance, surface and cross-sectional morphologies, as well as corrosion resistance. The results obtained from the salt spray test show that the zinc and Zn-Ni alloy CMM coatings are more corrosion-resistant than the monolithic coatings of zinc or Zn-Ni alloy alone with a similar thickness. The corrosion potential measurement and anodic polarisation tests were undertaken to examine the probable corrosion mechanisms of zinc and Zn-Ni alloy CMM coatings. Analysis on the micrographic features of zinc and Zn-Ni alloy CMM coatings after the corrosion test explains the probable reasons why the Zn-Ni/Zn CMM coatings have a better protective performance. Surface morphologies and compositional analysis of the remaining coating material of Zn-Ni alloy deposit after the corrosion test confirms the dezincification mechanism of the Zn-Ni alloy deposit during the corrosion process.
文摘In this study,the effect of Pb content on the surface morphology and salt spray corrosion resistance of hot dip Zn-AI-Mg coatings was investigated. The results showed that the coating surface easily formed small grains of zinc spangle structures and that the salt spray con'osion resistance of the coating decreased when Pb content was greater than 0.01%. The microstructure and energy dispersive spectrum analysis of surface and cross-sectional areas was performed by scanning electron microscopy. Pb content present in the coating was analyzed by glow discharge spectrum. The results showed that the distribution of Pb in the coating was not uniform. The Pb content was segregated on the surface and at the cross-section of the Zn-A1-MgZn2 ternary eutectic structure,especially,on the surface of the Zn-A1-MgZn2 ternary eutectic structure.
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.