Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing(...Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing(PDAS) and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
Al-4. 5Cu-5Pb alloy was prepared by sand and chill casting. The same alloy was also spray deposited at a gas pressure of 1.6 MPa. The microstructural features exhibit a coarse to fine dendritic morphology for sand ...Al-4. 5Cu-5Pb alloy was prepared by sand and chill casting. The same alloy was also spray deposited at a gas pressure of 1.6 MPa. The microstructural features exhibit a coarse to fine dendritic morphology for sand and chill cast alloys. Equiaxed grains were observed for spray formed alloys. Wear testing employing a pin-on-disc type set-up, reveals considerably lower wear of spray deposited alloy compared to that of chill and sand cast alloys. The morphological features of wear track on specimen and debris indicated a mixed oxidative-cum-adhesive wear mechanisms for these alloys tested in the present investigation. (Edited author abstract) 36 Refs.展开更多
The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock...The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.展开更多
Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These ...Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.展开更多
Al-4.5%Cu alloy was used as a matrix at2%,4%and6%of bamboo leaf ash(BLA)which was extruded from agro waste and was used as reinforcement.The composite which was fabricated by stir casting method possessed superior pro...Al-4.5%Cu alloy was used as a matrix at2%,4%and6%of bamboo leaf ash(BLA)which was extruded from agro waste and was used as reinforcement.The composite which was fabricated by stir casting method possessed superior properties due to an effective bonding between matrix and reinforcement particles.The fabricated composite specimens were subjected to various tests to determine the mechanical properties such as density,porosity,hardness and tensile strength.The results were compared with basic matrix alloy.Furthermore,the OM,SEM with EDAX and XRD analyses were carried out to analyze the dispersion of the reinforced particles in the selected matrix alloy.It was observed that the homogeneous distribution of BLA particles in composites was intragranular in nature.Moreover,it was also observed that BLA particles were well bonded with matrix alloy with clear interface.It was also found that the density decreased with increase in mass fraction of BLA particles and porosity increased with increase in mass fraction of BLA particles.The hardness and tensile strength were increased up to4%of BLA in the composite,with a further increase in BLA content the hardness and tensile strength decreased.展开更多
Cu-14Al-4.5Fe bronze powders with and without 0.6% Ce were prepared and their coatings were fabricated on 45# carbon steel substrate by atmospheric plasma spraying. The effects of rare earth Ce on the coating interfac...Cu-14Al-4.5Fe bronze powders with and without 0.6% Ce were prepared and their coatings were fabricated on 45# carbon steel substrate by atmospheric plasma spraying. The effects of rare earth Ce on the coating interface bonding strength, coatings and bonding interface vertical sections microstructure were investigated by tensile machine, X-ray diffraction analysis, scanning electron microscopy (SEM) and electronic probe microanalysis (EPMA). The results showed that the shape of powders was more spherical like, and the coating’s hardness and interface bonging tensile strength would be improved to 8.9% and 17.4%, respectively, higher than that of the Cu-14Al-4.5Fe coating without 0.6% Ce added. The refined of κ phases, well distributed matrix phases in coatings and the promotion of Fe, Al elements diffusion led to the improvement in interface bonding strength and hardness of the Cu-14Al-4.5Fe coating with addition of 0.6% Ce, which hardened and strengthened the coating.展开更多
The effects of electric field on the evolution of excess quenched-in vacancy as well as solute clustering in Al-4wt%Cu alloy, and on the vacancy migration and formation enthalpy of pure aluminum were investigated, usi...The effects of electric field on the evolution of excess quenched-in vacancy as well as solute clustering in Al-4wt%Cu alloy, and on the vacancy migration and formation enthalpy of pure aluminum were investigated, using positron annihilation lifetime spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, transmission electron microscopy, hardness measurement and four-probe electrical resistivity measurement. The results showed that the electric field improved age hardening response obviously and postponed the decay of excess vacancies for 30rain during the early stage ageing of Al-4wt%Cu alloy. A large number of 2-4nm GP zones with dense distribution were observed after 1 min ageing with an electric field applied. The electric field-assisted-aged sample owned a lower coarsening rate of GP zone, which was about three fifths of that in the aged sample without an electric field, from 1 min to 120 rain ageing. The electric field contributed 8% increase of the vacancy migration enthalpy (0.663 ±0.021 eV) of pure Al, comparing with that (0.611 ±0.023 eV) of pure Al without an electric field. The increase of vacancy migration enthalpy, induced by the electric field, was responsible for the difference on evolution of quenched-in vacancy, rapid solute clustering and age hardening improvement during the early stage ageing of Al-4wt%Cu alloy.展开更多
基金financially supported by the National Natural Science Foundation of China(No.50971101)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20136102110014)
文摘Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing(PDAS) and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
文摘Al-4. 5Cu-5Pb alloy was prepared by sand and chill casting. The same alloy was also spray deposited at a gas pressure of 1.6 MPa. The microstructural features exhibit a coarse to fine dendritic morphology for sand and chill cast alloys. Equiaxed grains were observed for spray formed alloys. Wear testing employing a pin-on-disc type set-up, reveals considerably lower wear of spray deposited alloy compared to that of chill and sand cast alloys. The morphological features of wear track on specimen and debris indicated a mixed oxidative-cum-adhesive wear mechanisms for these alloys tested in the present investigation. (Edited author abstract) 36 Refs.
文摘The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.
文摘Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.
基金the National Institute of Technology,Manipur,Imphal-India for financial support to carry out the experiment by Mr. B. Praveen Kumar,full time research scholar,enrolment number (15PME004),under the guidance of Dr. Anil Kumar Birru,assistant professor and head of Department of Mechanical Engineering,NIT MANIPUR
文摘Al-4.5%Cu alloy was used as a matrix at2%,4%and6%of bamboo leaf ash(BLA)which was extruded from agro waste and was used as reinforcement.The composite which was fabricated by stir casting method possessed superior properties due to an effective bonding between matrix and reinforcement particles.The fabricated composite specimens were subjected to various tests to determine the mechanical properties such as density,porosity,hardness and tensile strength.The results were compared with basic matrix alloy.Furthermore,the OM,SEM with EDAX and XRD analyses were carried out to analyze the dispersion of the reinforced particles in the selected matrix alloy.It was observed that the homogeneous distribution of BLA particles in composites was intragranular in nature.Moreover,it was also observed that BLA particles were well bonded with matrix alloy with clear interface.It was also found that the density decreased with increase in mass fraction of BLA particles and porosity increased with increase in mass fraction of BLA particles.The hardness and tensile strength were increased up to4%of BLA in the composite,with a further increase in BLA content the hardness and tensile strength decreased.
基金supported by the National Natural Science Foundation of China (50804019)
文摘Cu-14Al-4.5Fe bronze powders with and without 0.6% Ce were prepared and their coatings were fabricated on 45# carbon steel substrate by atmospheric plasma spraying. The effects of rare earth Ce on the coating interface bonding strength, coatings and bonding interface vertical sections microstructure were investigated by tensile machine, X-ray diffraction analysis, scanning electron microscopy (SEM) and electronic probe microanalysis (EPMA). The results showed that the shape of powders was more spherical like, and the coating’s hardness and interface bonging tensile strength would be improved to 8.9% and 17.4%, respectively, higher than that of the Cu-14Al-4.5Fe coating without 0.6% Ce added. The refined of κ phases, well distributed matrix phases in coatings and the promotion of Fe, Al elements diffusion led to the improvement in interface bonding strength and hardness of the Cu-14Al-4.5Fe coating with addition of 0.6% Ce, which hardened and strengthened the coating.
基金the Major State Basic Research Projections of China (Grant No. 2012CB619506)the National Natural Science Foundations of China (Grant Nos. 51071177, 11475130, 11575131 and 51474244)the 2011 Program of Ministry of Education of China (Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing) for their support
文摘The effects of electric field on the evolution of excess quenched-in vacancy as well as solute clustering in Al-4wt%Cu alloy, and on the vacancy migration and formation enthalpy of pure aluminum were investigated, using positron annihilation lifetime spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, transmission electron microscopy, hardness measurement and four-probe electrical resistivity measurement. The results showed that the electric field improved age hardening response obviously and postponed the decay of excess vacancies for 30rain during the early stage ageing of Al-4wt%Cu alloy. A large number of 2-4nm GP zones with dense distribution were observed after 1 min ageing with an electric field applied. The electric field-assisted-aged sample owned a lower coarsening rate of GP zone, which was about three fifths of that in the aged sample without an electric field, from 1 min to 120 rain ageing. The electric field contributed 8% increase of the vacancy migration enthalpy (0.663 ±0.021 eV) of pure Al, comparing with that (0.611 ±0.023 eV) of pure Al without an electric field. The increase of vacancy migration enthalpy, induced by the electric field, was responsible for the difference on evolution of quenched-in vacancy, rapid solute clustering and age hardening improvement during the early stage ageing of Al-4wt%Cu alloy.