Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could inc...The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could increase the isotheraml aging(IA)and thermal cyclic(TC)lifetimes of Sn−0.5Ag−0.7Cu/Cu joint from 662 to 787 h,and from 1597 to 1824 cycles,respectively.Also,trace addition of Al_(2)O_(3) NPs could slow down the shear force reduction of solder joint during thermal services,which was attributed to the pinning effect of Al_(2)O_(3) NPs on hindering the growth of grains and interfacial intermetallic compounds(IMCs).Theoretically,the growth coefficients of interfacial IMCs in IA process were calculated to be decreased from 1.61×10^(−10 )to 0.79×10^(−10) cm^(2)/h in IA process,and from 0.92×10^(−10) to 0.53×10^(−10) cm^(2)/h in TC process.This indicated that trace addition of Al_(2)O_(3) NPs can improve both IA and TC reliabilities of Sn−0.5Ag−0.7Cu/Cu joint,and a little more obvious in IA reliability.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金supported by the National Natural Science Foundation of China(Nos.52105369,61974070)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB460008)+1 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20200746)NUPTSF(No.NY220077).
文摘The effects of trace addition of Al_(2)O_(3) nanoparticles(NPs)on thermal reliabilities of Sn−0.5Ag−0.7Cu/Cu solder joints were investigated.Experimental results showed that trace addition of Al_(2)O_(3) NPs could increase the isotheraml aging(IA)and thermal cyclic(TC)lifetimes of Sn−0.5Ag−0.7Cu/Cu joint from 662 to 787 h,and from 1597 to 1824 cycles,respectively.Also,trace addition of Al_(2)O_(3) NPs could slow down the shear force reduction of solder joint during thermal services,which was attributed to the pinning effect of Al_(2)O_(3) NPs on hindering the growth of grains and interfacial intermetallic compounds(IMCs).Theoretically,the growth coefficients of interfacial IMCs in IA process were calculated to be decreased from 1.61×10^(−10 )to 0.79×10^(−10) cm^(2)/h in IA process,and from 0.92×10^(−10) to 0.53×10^(−10) cm^(2)/h in TC process.This indicated that trace addition of Al_(2)O_(3) NPs can improve both IA and TC reliabilities of Sn−0.5Ag−0.7Cu/Cu joint,and a little more obvious in IA reliability.