The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing fr...The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.展开更多
Macro-texture of an Mg-Al-Ca alloy prepared by friction stir welding (FSW) was investigated through pole figure measurement and X-ray diffraction (XRD) pattern analysis. It was found that at the top and bottom sur...Macro-texture of an Mg-Al-Ca alloy prepared by friction stir welding (FSW) was investigated through pole figure measurement and X-ray diffraction (XRD) pattern analysis. It was found that at the top and bottom surfaces of friction stir zone (FSZ), (0002) basal planes of magnesium tend to be arranged parallel to the plate surface. In the cross section of FSZ, no obvious texture had evolved and (0002) basal planes showed a random distribution.展开更多
A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advance...A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advanced shear technology(MCAST) unit before being transferred to a conventional cold chamber high-pressure die-casting(HPDC) machine for shape casting. The effect of melt conditioning was investigated,which was carried out both above and below the liquidus of the alloy,on the microstructure and properties of a Mg-Al-Ca alloy(AZ91D+2%Ca(mass fraction) ,named as AZX912) .The results show that many coarse externally-solidified crystals(ESCs) can be observed in the centre of conventional HPDC samples,and hot tearing occurs at the inter-dendritic region because of the lack of feeding.With the melting conditioning,the MC-HPDC samples not only have considerably refined size of ESCs but also have significantly reduced cast defects,thus provide superior mechanical properties to conventional HPDC castings.The solidification behaviour of the alloy under different processing routes was also discussed.展开更多
It is a long-sought goal to achieve desired mechanical properties through tailoring phase formation in alloys,especially for complicated multi-phase alloys.In fact,unveiling nucleation of competitive crystalline phase...It is a long-sought goal to achieve desired mechanical properties through tailoring phase formation in alloys,especially for complicated multi-phase alloys.In fact,unveiling nucleation of competitive crystalline phases during solidification hinges on the nature of liquid.Here we employ ab initio molecular dynamics simulations(AIMD)to reveal liquid configuration of the Mg-Al-Ca alloys and explore its effect on the transformation of Ca-containing Laves phase from Al2Ca to Mg_(2)Ca with increasing Ca/Al ratio(rCa/Al).There is structural similarity between liquid and crystalline phase in terms of the local arrangement environment,and the connection schemes of polyhedras.The forming signature of Mg_(2)Ca,as hinted by the topological and chemical short-range order originating from liquid,ascends monotonically with increasing rCa/Al.However,Al_(2)Ca crystal-like order increase at first and then decrease at the crossover of rCa/Al=0.74,corresponding to experimental composition of phase transition from Al_(2)Ca to Mg_(2)Ca.The origin of phase transformation across different compositions lies in the dense packing of atomic configurations and preferential bonding of chemical species in both liquid and solid.The present finding provides a feasible scenario for manipulating phase formation to achieve high performance alloys by tailoring the crystal-like order in liquid.展开更多
The high-strength and creep-resistant Mg-Al-Ca-Mn alloys have broad application prospects.However,solidification cracking occurs in these alloys in certain conditions and the origin is still unclear.This work investig...The high-strength and creep-resistant Mg-Al-Ca-Mn alloys have broad application prospects.However,solidification cracking occurs in these alloys in certain conditions and the origin is still unclear.This work investigated the relationship between the solidification path,microstructure evolution and solidification cracking behavior of the Mg-xAl-2Ca-Mn alloys during tungsten inert gas(TIG)welding.Results show that when the fusion zone’s Ca/Al mass ratio ranges from 0.4 to 1.64,solidification cracking occurs at a Ca/Al mass ratio of∼0.7.As the Ca/Al mass ratio approaches this value,the grain size increases,and the Laves phases are reduced gradually.The early formed Laves phases play an important role in promoting dendrite segmentation,refining grain size and enhancing grain boundaries.When a solidification path delays the formation of Laves phases,the Laves phases will be reduced accompanied by grain coarsening.In such a solidifying microstructure,intergranular cavitation is easy to occur,and the resistance of the semi-solid alloy to crack propagation is severely reduced.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The resul...To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The results show that a small amount of Gd can significantly refine a-Mg grains and change the morphology of AUCa particles.Indeed,the formed Al8Mn4Gd phase could serve as a heterogeneous nucleation site for the a-Mg grains and AbCa particles.Furthermore,the introduction of Gd not only optimized the mechanical properties of Mg-Al-Ca alloy,but also facilitated the thermal deformation(such as hot rolling).展开更多
Friction stir processing(FSP)was used to modify the microstructure and improve the mechanical properties and corrosion resistance of an Mg-Al-Ca alloy.The results demonstrated that,after FSP,the grain size of the Mg-A...Friction stir processing(FSP)was used to modify the microstructure and improve the mechanical properties and corrosion resistance of an Mg-Al-Ca alloy.The results demonstrated that,after FSP,the grain size of the Mg-Al-Ca alloy was decreased from 13.3 to 6.7μm.Meanwhile,the Al_(8)Mn_(5) phase was broken and dispersed,and its amount was increased.The yield strength and ultimate tensile strength of the Mg-Al-Ca alloy were increased by 17.0%and 10.1%,respectively,due to the combination of fine grain,second phase,and orientation strengthening,while the elongation was slightly decreased.The immersion and electrochemical corrosion rates in 3.5 wt%NaCl solution decreased by 18.4%and 37.5%,respectively,which contributed to grain refinement.However,the stress corrosion cracking(SCC)resistance of the modified Mg-Al-Ca alloy decreased significantly,which was mainly due to the filiform corrosion induced by the Al_(8)Mn_(5) phase.SCC was mainly controlled by anodic dissolution,while the cathodic hydrogen evolution accelerated the SCC process.展开更多
A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-...A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-extruded Mg-1.3Al-1.2Ca-0.5Zn-0.6Mn(wt%)sample.Microstructure characterizations showed that the high strength is mainly associated with the ultra-fined dynamically recrystallized(DRXed)grains.Moreover,high-density dislocations in the un-DRXed region and nano-precipitates are distributed among theα-Mg matrix.The high ductility property can be ascribed to the high volume fraction of DRXed grains with a much randomized texture,as well as the formations of high-density subgrains in the un-DRXed grain regions.展开更多
In this study,the multi-pass equal channel angular pressing(ECAP)was employed on a high-calcium-content Mg-Al-Ca-Mn alloy to tailor its microstructure and mechanical properties.The obtained results showed that the net...In this study,the multi-pass equal channel angular pressing(ECAP)was employed on a high-calcium-content Mg-Al-Ca-Mn alloy to tailor its microstructure and mechanical properties.The obtained results showed that the network-shaped Mg2Ca and(Mg,Al)2Ca eutectic compounds in as-cast alloy were gradually crushed into ultra-fine particles after ECAP,which exhibited a bimodal particle size distribution and most aggregated at original grain boundaries.Dynamic recrystallization(DRX)of α-Mg occurred during hot deformation via a particle stimulated mechanism,and the almost complete DRX with an average grain size around 1.5μm was obtained after 12p-ECAP.Moreover,abundant nano-sized acicular and spherical precipitates were dynamically precipitated withinα-Mg grains during ECAP.Tensile test results indicated that the maximum strength and ductility were acquired for 12p-ECAP alloy with ultimate tensile strength of 372 MPa and fracture elongation of 8%.The enhanced strength of the alloy could be ascribed to fine DRX grains,ultra-fine Ca-containing particles and dynamically precipitated nano-precipitates,while the improved ductility was mainly due to the refined and homogeneous microstructure,and weak texture with high average Schmid factors.展开更多
First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are ...First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are in good agreement with the experimental and other theoretical values. The calculated formation enthalpies and cohesive energies show that Al2Ca has the strongest alloying ability, and Al4Sr has the highest structural stability. The densities of states (DOS), Mulliken electronic populations, and electronic charge density difference are obtained to reveal the underlying mechanism of structural stability. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are estimated from the calculated elastic constants. The mechanical properties of these phases are further analyzed and discussed. The Gibbs free energy and Debye temperature are also calculated and discussed.展开更多
To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containin...To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containing(2Ca)and Mg_(2)Ca-containing(4Ca)alloys.At the beginning of corrosion,the two as-cast alloys are corroded slowly compared with ECAP alloys.With prolonging the corrosion time,the corrosion of ECAP alloys becomes slighter than that of as-cast alloys,which is mainly ascribed to the dispersion and refinement of the second phase in ECAP alloys.Moreover,the corrosion degree of 2Ca alloys is always slighter than that of 4Ca alloys,suggesting that Al_(2)Ca phase is more beneficial to the enhancement of corrosion resistance of Mg−Al−Ca−Mn based alloys than Mg_(2)Ca phase.Finally,based on the examinations of corrosion surface and electrochemical testing results,different corrosion mechanisms caused by the distributions and morphology of Al_(2)Ca and Mg_(2)Ca phases are discussed.展开更多
As a newly developing superplastic aluminum alloy, Al Ca alloy has been widely used in industry, however the technology for preparing Al Ca master alloy and its influencing factors need to be further studied. Therefor...As a newly developing superplastic aluminum alloy, Al Ca alloy has been widely used in industry, however the technology for preparing Al Ca master alloy and its influencing factors need to be further studied. Therefore the Al Ca master alloy was prepared by using liquid aluminum cathode and a mixture of 80%CaCl 2 18%KCl 2%CaF 2 as the molten salt electrolysis in a laboratory electrolyte cell; the effects of electrolysis temperature, cathodic current density and electrolytic duration on current efficiency and Ca content of Al Ca alloy as well were studied. Through laboratory experiments, the parameters for smooth electrolytic reaction were proposed. The proper electrolysis technology is as follows: with the 80%CaCl 2 18%KCl 2%CaF 2 electrolyte, the electrolytic temperature is 973 K and the cathodic current density is 0.8 A/cm 2, the electrolysis can go on smoothly and a calcium content of 17.5%(mass fraction) can be obtained. With the increase of electrolysis duration, the calcium content in the alloy increases whereas the current efficiency decreases.展开更多
The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the forma...The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the formation of Al_(2)Ca in as-cast Mg-1Mn-0.5Al-0.1Ca alloy and both Mg_(2)Ca and Al_(2)Ca phases in Mg-1Mn-0.5Al-0.5Ca alloy.The formed Al_(2)Ca particles were fractured during extrusion process and distributed at grain boundary along extrusion direction (ED).The Mg_(2)Ca phase was dynamically precipitated during extrusion process,hindering dislocation movement and reducing dislocation accumulation in low angle grain boundaries (LAGBs) and hindering the transformation of high density of LAGBs into high angle grain boundaries (HAGBs).Therefore,a bimodal structure composed of fine dynamically recrystallized (DRXed) grains and coarse un DRXed regions was formed in Ca-microalloyed Mg-1Mn-0.5Al alloys.The bimodal structure resulted in effective hetero-deformation-induced (HDI) strengthening.Additionally,the fine grains in DRXed regions and the coarse grains in un DRXed regions and the dynamically precipitated Mg_(2)Ca phase significantly enhanced the tensile yield strength from 224 MPa in Mg-1Mn-0.5Al to335 MPa and 352 MPa in Mg-1Mn-0.5Al-0.1Ca and Mg-1Mn-0.5Al-0.5Ca,respectively.Finally,a yield point phenomenon was observed in as-extruded Mg-1Mn-0.5Al-x Ca alloys,more profound with 0.5%Ca addition,which was due to the formation of (■) extension twins in un DRXed regions.展开更多
The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and h...The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(9451806001002350)supported by Guangdong Science Fund+2 种基金Project(30815007)supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyProject(09JJ1007)supported by Hunan Science Fund for Distinguished Young ScholarsProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of China
文摘The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.
文摘Macro-texture of an Mg-Al-Ca alloy prepared by friction stir welding (FSW) was investigated through pole figure measurement and X-ray diffraction (XRD) pattern analysis. It was found that at the top and bottom surfaces of friction stir zone (FSZ), (0002) basal planes of magnesium tend to be arranged parallel to the plate surface. In the cross section of FSZ, no obvious texture had evolved and (0002) basal planes showed a random distribution.
基金Project(2007CB613704) supported by the National Basic Research Program of China
文摘A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advanced shear technology(MCAST) unit before being transferred to a conventional cold chamber high-pressure die-casting(HPDC) machine for shape casting. The effect of melt conditioning was investigated,which was carried out both above and below the liquidus of the alloy,on the microstructure and properties of a Mg-Al-Ca alloy(AZ91D+2%Ca(mass fraction) ,named as AZX912) .The results show that many coarse externally-solidified crystals(ESCs) can be observed in the centre of conventional HPDC samples,and hot tearing occurs at the inter-dendritic region because of the lack of feeding.With the melting conditioning,the MC-HPDC samples not only have considerably refined size of ESCs but also have significantly reduced cast defects,thus provide superior mechanical properties to conventional HPDC castings.The solidification behaviour of the alloy under different processing routes was also discussed.
基金Financial supports from The National Natural Science Foundation of China(Nos.52074132,51625402,and U19A2084)are greatly acknowledgedfinancial support came from The Science and Technology Development Program of Jilin Province(Nos.20200401025GX and 20200201002JC)+1 种基金The Central Universities,JLU,Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the finacial support from the U.S.Department of Energy via Award number DE-NE0008945。
文摘It is a long-sought goal to achieve desired mechanical properties through tailoring phase formation in alloys,especially for complicated multi-phase alloys.In fact,unveiling nucleation of competitive crystalline phases during solidification hinges on the nature of liquid.Here we employ ab initio molecular dynamics simulations(AIMD)to reveal liquid configuration of the Mg-Al-Ca alloys and explore its effect on the transformation of Ca-containing Laves phase from Al2Ca to Mg_(2)Ca with increasing Ca/Al ratio(rCa/Al).There is structural similarity between liquid and crystalline phase in terms of the local arrangement environment,and the connection schemes of polyhedras.The forming signature of Mg_(2)Ca,as hinted by the topological and chemical short-range order originating from liquid,ascends monotonically with increasing rCa/Al.However,Al_(2)Ca crystal-like order increase at first and then decrease at the crossover of rCa/Al=0.74,corresponding to experimental composition of phase transition from Al_(2)Ca to Mg_(2)Ca.The origin of phase transformation across different compositions lies in the dense packing of atomic configurations and preferential bonding of chemical species in both liquid and solid.The present finding provides a feasible scenario for manipulating phase formation to achieve high performance alloys by tailoring the crystal-like order in liquid.
基金supported by the National Natural Science Foun-dation of China(Nos.U2102212,52301134,52271092,52371095)Natural Science Foundation of Chongqing(Nos.CSTB2022NSCQ-MSX1438,CSTB2022NSCQ-MSX0891)+1 种基金Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJQN202001527)Innovative research team of universities in Chongqing(No.CXQT21030).
文摘The high-strength and creep-resistant Mg-Al-Ca-Mn alloys have broad application prospects.However,solidification cracking occurs in these alloys in certain conditions and the origin is still unclear.This work investigated the relationship between the solidification path,microstructure evolution and solidification cracking behavior of the Mg-xAl-2Ca-Mn alloys during tungsten inert gas(TIG)welding.Results show that when the fusion zone’s Ca/Al mass ratio ranges from 0.4 to 1.64,solidification cracking occurs at a Ca/Al mass ratio of∼0.7.As the Ca/Al mass ratio approaches this value,the grain size increases,and the Laves phases are reduced gradually.The early formed Laves phases play an important role in promoting dendrite segmentation,refining grain size and enhancing grain boundaries.When a solidification path delays the formation of Laves phases,the Laves phases will be reduced accompanied by grain coarsening.In such a solidifying microstructure,intergranular cavitation is easy to occur,and the resistance of the semi-solid alloy to crack propagation is severely reduced.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金the National Science Foundation of China(No.51701010)Beijing Government Funds for the Constructive Project of Central Universities(No.353139535)Thanks to Gaomi Xiangyu Company(Shandong province,China)for the gravity casting.
文摘To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The results show that a small amount of Gd can significantly refine a-Mg grains and change the morphology of AUCa particles.Indeed,the formed Al8Mn4Gd phase could serve as a heterogeneous nucleation site for the a-Mg grains and AbCa particles.Furthermore,the introduction of Gd not only optimized the mechanical properties of Mg-Al-Ca alloy,but also facilitated the thermal deformation(such as hot rolling).
基金financially supported by the National Natural Science Foundation of China(Nos.52034005,U1760201,51974220)the National Key Research and Development Program of China(No.2017YFB0306202)+2 种基金the Key Research and Development Program of Shaanxi Province(No.2017ZDXM-GY-037)the Youth Innovation Team of Shaanxi Universities(2019-2022)the China Baowu Iron and Steel Group Co.Ltd with Mg-Al-Ca alloy materials。
文摘Friction stir processing(FSP)was used to modify the microstructure and improve the mechanical properties and corrosion resistance of an Mg-Al-Ca alloy.The results demonstrated that,after FSP,the grain size of the Mg-Al-Ca alloy was decreased from 13.3 to 6.7μm.Meanwhile,the Al_(8)Mn_(5) phase was broken and dispersed,and its amount was increased.The yield strength and ultimate tensile strength of the Mg-Al-Ca alloy were increased by 17.0%and 10.1%,respectively,due to the combination of fine grain,second phase,and orientation strengthening,while the elongation was slightly decreased.The immersion and electrochemical corrosion rates in 3.5 wt%NaCl solution decreased by 18.4%and 37.5%,respectively,which contributed to grain refinement.However,the stress corrosion cracking(SCC)resistance of the modified Mg-Al-Ca alloy decreased significantly,which was mainly due to the filiform corrosion induced by the Al_(8)Mn_(5) phase.SCC was mainly controlled by anodic dissolution,while the cathodic hydrogen evolution accelerated the SCC process.
基金supported by National Key Research and Development Program of China (No. 2021 YFB3701000)the National Natural Science Foundation of China (Nos. U2167213 and 51971053)+1 种基金the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (Nos. 2019-2021QNRC001, 20192021QNRC002, and 2019-2021QNRC003)and the Fundamental Research Funds for the Central Universities (No. N2202020)
文摘A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-extruded Mg-1.3Al-1.2Ca-0.5Zn-0.6Mn(wt%)sample.Microstructure characterizations showed that the high strength is mainly associated with the ultra-fined dynamically recrystallized(DRXed)grains.Moreover,high-density dislocations in the un-DRXed region and nano-precipitates are distributed among theα-Mg matrix.The high ductility property can be ascribed to the high volume fraction of DRXed grains with a much randomized texture,as well as the formations of high-density subgrains in the un-DRXed grain regions.
基金This work was supported by the Natural Science Foun-dation of China(51901068)the Natural Science Foundation of Jiangsu Province of China(BK20160869)+1 种基金the Fundamental Research Funds for the Central Universities(2018B16614)the Nantong Science and Technology Project.
文摘In this study,the multi-pass equal channel angular pressing(ECAP)was employed on a high-calcium-content Mg-Al-Ca-Mn alloy to tailor its microstructure and mechanical properties.The obtained results showed that the network-shaped Mg2Ca and(Mg,Al)2Ca eutectic compounds in as-cast alloy were gradually crushed into ultra-fine particles after ECAP,which exhibited a bimodal particle size distribution and most aggregated at original grain boundaries.Dynamic recrystallization(DRX)of α-Mg occurred during hot deformation via a particle stimulated mechanism,and the almost complete DRX with an average grain size around 1.5μm was obtained after 12p-ECAP.Moreover,abundant nano-sized acicular and spherical precipitates were dynamically precipitated withinα-Mg grains during ECAP.Tensile test results indicated that the maximum strength and ductility were acquired for 12p-ECAP alloy with ultimate tensile strength of 372 MPa and fracture elongation of 8%.The enhanced strength of the alloy could be ascribed to fine DRX grains,ultra-fine Ca-containing particles and dynamically precipitated nano-precipitates,while the improved ductility was mainly due to the refined and homogeneous microstructure,and weak texture with high average Schmid factors.
基金Funded by the National Natural Science Foundation of China(Nos.51204147,51274175)the International Cooperation Project Supported by Ministry of Science and Technology of China(No.2011DFA50520)the Postgraduate Excellent Innovation Project of Shanxi Province(No.20133105)
文摘First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are in good agreement with the experimental and other theoretical values. The calculated formation enthalpies and cohesive energies show that Al2Ca has the strongest alloying ability, and Al4Sr has the highest structural stability. The densities of states (DOS), Mulliken electronic populations, and electronic charge density difference are obtained to reveal the underlying mechanism of structural stability. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are estimated from the calculated elastic constants. The mechanical properties of these phases are further analyzed and discussed. The Gibbs free energy and Debye temperature are also calculated and discussed.
基金financial supports from the National Natural Science Foundation of China (Nos.51901068,51979099)the Key Research and Development Project of Jiangsu Province,China (No.BE2021027)+1 种基金the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,China (No.ASMA202102)the Research Fund from Key Laboratory for Light-weight Materials of Jiangsu Province,China。
文摘To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containing(2Ca)and Mg_(2)Ca-containing(4Ca)alloys.At the beginning of corrosion,the two as-cast alloys are corroded slowly compared with ECAP alloys.With prolonging the corrosion time,the corrosion of ECAP alloys becomes slighter than that of as-cast alloys,which is mainly ascribed to the dispersion and refinement of the second phase in ECAP alloys.Moreover,the corrosion degree of 2Ca alloys is always slighter than that of 4Ca alloys,suggesting that Al_(2)Ca phase is more beneficial to the enhancement of corrosion resistance of Mg−Al−Ca−Mn based alloys than Mg_(2)Ca phase.Finally,based on the examinations of corrosion surface and electrochemical testing results,different corrosion mechanisms caused by the distributions and morphology of Al_(2)Ca and Mg_(2)Ca phases are discussed.
文摘As a newly developing superplastic aluminum alloy, Al Ca alloy has been widely used in industry, however the technology for preparing Al Ca master alloy and its influencing factors need to be further studied. Therefore the Al Ca master alloy was prepared by using liquid aluminum cathode and a mixture of 80%CaCl 2 18%KCl 2%CaF 2 as the molten salt electrolysis in a laboratory electrolyte cell; the effects of electrolysis temperature, cathodic current density and electrolytic duration on current efficiency and Ca content of Al Ca alloy as well were studied. Through laboratory experiments, the parameters for smooth electrolytic reaction were proposed. The proper electrolysis technology is as follows: with the 80%CaCl 2 18%KCl 2%CaF 2 electrolyte, the electrolytic temperature is 973 K and the cathodic current density is 0.8 A/cm 2, the electrolysis can go on smoothly and a calcium content of 17.5%(mass fraction) can be obtained. With the increase of electrolysis duration, the calcium content in the alloy increases whereas the current efficiency decreases.
基金funded by the National Natural Science Foundation of China (Project 52271092)the Chongqing Science and Technology Commission (cstc2021jcyj-msxm X0814,CSTB2022NSCQ-MSX0891)+1 种基金the Chongqing Municipal Education Commission (KJQN202101523)the support from The Ohio State University。
文摘The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the formation of Al_(2)Ca in as-cast Mg-1Mn-0.5Al-0.1Ca alloy and both Mg_(2)Ca and Al_(2)Ca phases in Mg-1Mn-0.5Al-0.5Ca alloy.The formed Al_(2)Ca particles were fractured during extrusion process and distributed at grain boundary along extrusion direction (ED).The Mg_(2)Ca phase was dynamically precipitated during extrusion process,hindering dislocation movement and reducing dislocation accumulation in low angle grain boundaries (LAGBs) and hindering the transformation of high density of LAGBs into high angle grain boundaries (HAGBs).Therefore,a bimodal structure composed of fine dynamically recrystallized (DRXed) grains and coarse un DRXed regions was formed in Ca-microalloyed Mg-1Mn-0.5Al alloys.The bimodal structure resulted in effective hetero-deformation-induced (HDI) strengthening.Additionally,the fine grains in DRXed regions and the coarse grains in un DRXed regions and the dynamically precipitated Mg_(2)Ca phase significantly enhanced the tensile yield strength from 224 MPa in Mg-1Mn-0.5Al to335 MPa and 352 MPa in Mg-1Mn-0.5Al-0.1Ca and Mg-1Mn-0.5Al-0.5Ca,respectively.Finally,a yield point phenomenon was observed in as-extruded Mg-1Mn-0.5Al-x Ca alloys,more profound with 0.5%Ca addition,which was due to the formation of (■) extension twins in un DRXed regions.
基金supported by Russian Science Foundation(Grant No.14-19-00632)
文摘The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.