期刊文献+
共找到8,082篇文章
< 1 2 250 >
每页显示 20 50 100
I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images
1
作者 Ming-jun Hou Hao Dong +7 位作者 Xiao-yuan Ji Wen-bing Zou Xiang-sheng Xia Meng Li Ya-jun Yin Bao-hui Li Qiang Chen Jian-xin Zhou 《China Foundry》 SCIE EI CAS CSCD 2024年第3期239-247,共9页
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H... The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks. 展开更多
关键词 light alloy casting flaw detection image generator DISCRIMINATOR comprehensive evaluation index
下载PDF
Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature
2
作者 Binghui Hu Yu Lei +3 位作者 Hang Li Ziyi Wang Chao Yu Guozheng Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1115-1125,共11页
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R... The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING multiaxial loading loading path stress level
下载PDF
Microstructure and mechanical properties of Co-28Cr-6Mo-0.22C investment castings by current solution treatment
3
作者 Ze-yu Dan Jun Liu +4 位作者 Jian-lei Zhang Yan-hua Li Yuan-xin Deng Yun-hu Zhang Chang-jiang Song 《China Foundry》 SCIE EI CAS CSCD 2024年第4期369-378,共10页
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s... This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods. 展开更多
关键词 CoCrMo alloy investment castings current solution treatment microstructure mechanical property CARBIDE
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
4
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
A comparative study on Sn macrosegregation behavior of ternary Al-Sn-Cu alloys prepared by gravity casting and squeeze casting 被引量:2
5
作者 Ming Xu Yan-guo Yin +1 位作者 Cong-min Li Cong-chong Duan 《China Foundry》 SCIE CAS CSCD 2023年第1期63-70,共8页
A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of th... A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting. 展开更多
关键词 ternary Al-Sn-Cu alloy squeeze casting MACROSEGREGATION mechanism
下载PDF
Effects of magnesium and copper additions on tensile properties of Al-Si-Cr die casting alloy under as-cast and T5 conditions 被引量:1
6
作者 Hong-yi Zhan Yi-wu Xu +3 位作者 Pan Wang Jian-feng Wang Jin-ping Li Le-peng Zhang 《China Foundry》 SCIE CAS CSCD 2023年第1期12-22,共11页
Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mas... Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars. 展开更多
关键词 Al-Si alloy INTERMETALLICS high pressure die casting tensile property T7 heat treatment
下载PDF
Mechanical Evaluation of AZ80 Magnesium Alloy in Cast Wrought Form
7
作者 Peilin Ying Anita Hu +1 位作者 Wutian Shen Henry Hu 《Journal of Materials Science and Chemical Engineering》 2024年第4期119-125,共7页
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co... Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. . 展开更多
关键词 Squeeze casting Wrought Magnesium alloy AZ80 POROSITY Tensile Prop-erties
下载PDF
Recent advances on grain refinement of magnesium rare-earth alloys during the whole casting processes:A review
8
作者 Guohua Wu Xin Tong +2 位作者 Cunlong Wang Rui Jiang Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3463-3483,共21页
High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, o... High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, orthopedic implants, etc. Controlling grain size and distribution of it is key to the promising mechanical performance of Mg-RE alloy casting components. During the casting of a real component, nearly every procedure in the fabrication process will influence the grain refinement effect. The procedure may include and may not be limited to the chemical inoculations, possibly applied physical fields, the interfere between grain refiner and purifications, and the casting techniques with different processing parameters. This paper reviews the recent advances and proposed future developments in these categories on grain refinement of cast Mg-RE alloys. The review will provide insights for the future design of grain refinement techniques,the choosing of processing parameters, and coping strategies for the failure of coarsening for cast Mg-RE components with high quality and good performance. 展开更多
关键词 Magnesium alloys cast Mg-RE alloys Grain refinement
下载PDF
Solidification microstructure of Ti-43Al alloy by twin-roll strip casting
9
作者 Yang Chen Guo-huai Liu +1 位作者 Ye Wang Zhao-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第2期99-107,共9页
As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip castin... As a near-net-shape technology,the twin-roll strip casting(TRC)process can be considered to apply to the fabrication of TiAl alloy sheets.However,the control of the grain distribution is very important in strip casting because the mechanical properties of strips are directly determined by the solidification microstructure.A three-dimensional(3D)cellular automation finite-element(CAFE)model based on ProCAST software was established to simulate the solidification microstructure of Ti-43Al alloy.Then,the influence of casting temperature and the maximum nucleation density(nmax)on the solidification microstructure was investigated in detail.The simulation results provide a good explanation and prediction for the solidification microstructure in the molten pool before leaving the kissing point.Experimental and simulated microstructure show the common texture<001>orientation in the columnar grains zone.Finally,the microstructure evolution of the Ti-43Al alloy was analyzed and the solidification phase transformation path during the TSC process was determined,i.e.,L→L+β→β→β+α→α+γ+β/B2 phase under a faster cooling rate and L→L+β→β→β+α→γ+lamellar(α_(2)+γ)+β/B2 phase under a slower cooling rate. 展开更多
关键词 TiAl alloy simulation MICROSTRUCTURE strip casting SOLIDIFICATION
下载PDF
Effects of microalloying on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn castings 被引量:1
10
作者 刘恩克 杨福宝 +1 位作者 徐骏 石力开 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期308-313,共6页
The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and... The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and Zr can remarkably reduce the grain sizes of Al-Mg-Mn castings. Combination of Sc,Zr and Er can completely eliminate the columnar dendritic grains and further obtain refined grains with nondendritic sub-structure;the whole wedge-shaped cross-section of the casting consequently exhibits more homogeneous cast structures instead of the typical tri-crystal region structures. Large amounts of Al3Sc-based intermetallic compound particles,such as Al3(Sc1-x,Zrx),Al3(Sc1-x,Tix),Al3(Sc1-x-y,Zrx,Tiy) and Al3(Sc1-x-y,Zrx,Ery) are present in the microalloyed alloys,resulting from their numerously forming in high-temperature melt before solidification. These phases have the same L12-type crystal structure to Al3Sc phase as well as smaller misfits with the primary α(Al) grains,which leads to more efficient epitaxial growth for α(Al) grains on all crystal planes of these composite phases. The experimental alloys have been hardened in different levels and,show the low susceptibilities of hardness change with varying cooling rate. The high hardness of the castings are caused by grain-refined strengthening and solid solution strengthening. 展开更多
关键词 合金 微观结构
下载PDF
Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy 被引量:1
11
作者 Yu Lei Ziyi Wang Guozheng Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3255-3271,共17页
The uniaxial cyclic plasticity of cast AZ91 magnesium(Mg) alloy was investigated by conducting a series of cyclic straining and stressing tests at room temperature, and a unique cyclic plasticity(especially for ratche... The uniaxial cyclic plasticity of cast AZ91 magnesium(Mg) alloy was investigated by conducting a series of cyclic straining and stressing tests at room temperature, and a unique cyclic plasticity(especially for ratchetting) and its physical nature were revealed. The experimental results demonstrate that the cast AZ91 Mg alloy behaviors tension-compression symmetry, because the dislocation slipping and twinning occur during both the tensile and compressive deformations;although the cast AZ91 alloy presents a certain pseudo-elastic behavior during unloading due to the detwinning, there is no obvious S-shaped asymmetric hysteresis loop like that of wrought Mg alloy in the cyclic tensile-compressive tests, and an obvious cyclic hardening is observed;moreover, the ratchetting of the cast AZ91 alloy presented in the cyclic stressing tests depends remarkably on the prescribed mean stress and stress amplitude, but slightly changes with the stress rate, and the evolution of responding peak/valley strain greatly differs from that of wrought Mg alloys and stainless steels. This work provides rich experimental data for establishing the constitutive model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING Twinning/detwinning Stress level Stress rate
下载PDF
Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys 被引量:21
12
作者 BeijiangZHANG GuiminLU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期401-403,共3页
The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous cast... The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements. 展开更多
关键词 Continuous casting Aluminum alloy Microstructure. Electromagnetic casting
下载PDF
Microstructure and mechanical properties of NZ30K alloy by semi-continuous direct chill and sand mould casting processes 被引量:25
13
作者 Zheng Xingwei Dong Jie +1 位作者 Liu Wencai Ding Wenjiang 《China Foundry》 SCIE CAS 2011年第1期41-46,共6页
The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results... The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively. 展开更多
关键词 NZ30K alloy direct-chill casting MICROSTRUCTURE mechanical properties
下载PDF
The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys 被引量:16
14
作者 Zhenzhong CHEN Ping HE Liqing CHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期213-216,共4页
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particle... Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy. 展开更多
关键词 Aluminum-matrix composites casting alloy Fatigue crack propagation PARTICLE
下载PDF
Study on Multiple Electromagnetic Continuous Casting of Aluminum Alloy 被引量:13
15
作者 Zhifeng ZHANG Jun XUN Likai SHI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期437-440,共4页
To obtain semi-solid Al alloy billet with high quality, an investigation was carried out by imposing a multiple magnetic field from the outside of a copper mold in the continuous casting. AISi6Mg2 alloy designed for s... To obtain semi-solid Al alloy billet with high quality, an investigation was carried out by imposing a multiple magnetic field from the outside of a copper mold in the continuous casting. AISi6Mg2 alloy designed for semi-solid metal (SSM) processing was continuously cast through a submerged entry nozzle under various conditions. Effects of multiple magnetic field on meniscus motion, temperature distribution and billet quality were examined. The experimental results showed that meniscus disturbance caused by electromagnetic stirring could be controlled effectively and the surface quality of semi-solid AI alloy billet was improved greatly, and an uniformly fine, globular microstructure across the transverse section of the billet was achieved by optimizing the distribution of multiple magnetic field. 展开更多
关键词 Continuous casting Multiple magnetic field Aluminum alloy SEMI-SOLID MICROSTRUCTURE
下载PDF
Microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by a horizontal continuous casting with heating-cooling combined mold technology 被引量:13
16
作者 Jun Mei Xin-hua Liu Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期339-347,共9页
A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microst... A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube. 展开更多
关键词 cupronickel alloys thin-wall tubes continuous casting microstructure mechanical properties
下载PDF
Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation 被引量:14
17
作者 Jiang Wenming Fan Zitian 《China Foundry》 SCIE CAS 2014年第2期119-124,共6页
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr... To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced. 展开更多
关键词 low pressure casting A356 aluminum alloy numerical simulation OPTIMIZATION intake manifold
下载PDF
Liquid-solid interface control of BFe10-1-1 cupronickel alloy tubes during HCCM horizontal continuous casting and its effect on the microstructure and properties 被引量:9
18
作者 Jun Mei Xin-hua Liu +2 位作者 Yan-bin Jiang Song Chen Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期748-758,共11页
Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the in... Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the influence of LSI position on the surface quality, microstructure, texture, and mechanical properties of a BFe10-1-1 tube (φ50 mm × 5 mm). HCCM efficiently improves the temperature gradient in front of the LSI. Through controlling the LSI position, the radial columnar-grained microstructure that is commonly generated by cooling mold casting can be eliminated, and the axial columnar-grained microstructure can be obtained. Under the condition of 1250℃ melting and holding temperature, 1200-1250℃ mold heating temperature, 50-80 mm/min mean drawing speed, and 500-700 L/h cooling water flow rate, the LSI position is located at the middle of the transition zone or near the entrance of the cooling section, and the as-cast tube not only has a strong axial columnar-grained microstructure ({hkl}〈621〉, {hkl}〈221〉) due to strong axial heating conduction during solidification but also has smooth internal and external surfaces without cracks, scratches, and other macroscopic defects due to short solidified shell length and short contact length between the tube and the mold at high temperature. The elongation and tensile strength of the tube are 46.0%-47.2% and 210-221 MPa, respectively, which can be directly used for the subsequent cold-large-strain processing. 展开更多
关键词 copper-nickel alloys TUBES continuous casting INTERFACES textures mechanical properties
下载PDF
Effect of low-frequency electromagnetic field on the as-cast microstructure of a new super high strength aluminum alloy by horizontal continuous casting 被引量:8
19
作者 Yubo ZUO Jianzhong CUI +3 位作者 Yang WANG Xiaotao LIU Zhihao ZHAO Haitao Zhang 《China Foundry》 SCIE CAS 2005年第1期48-51,共4页
The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-c... The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform. 展开更多
关键词 LOW-FREQUENCY ELECTROMAGNETIC field HORIZONTAL continuous casting microstructure AL-ZN-MG-CU alloy
下载PDF
Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys 被引量:9
20
作者 LILT Hongbao SHEN Bin +2 位作者 ZHU Ming ZHOU Xing MAO Xiemin 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期617-622,共6页
The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are ... The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed. 展开更多
关键词 boron nitride shell mold titanium alloy interface reaction investment casting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部