This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argu...This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.展开更多
Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of contin...Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi_weight functions were obtained as virtual displacement and stress fields with eigenvalue?_lambda. Integral expression of fracture parameters, K Ⅰ and K Ⅱ, were obtained from reciprocal work theorem with semi_weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi_weight function method is a simple, convenient and high precision calculation method.展开更多
Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding ...Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding velocity. Microstructure and composition of the EBW joint were investigated by means of optical micrography and EDX analysis, mechanical properties of the joint were also tested. The results show that joint’s macrostructure was divided into three zones: top weld zone near QCr0.8 and bottom weld zone consisting of Cu(ss.Fe) with a certain amount of dispersedly distributed (α+ε) mixed microstructure, middle weld zone consisting of (α+ε) microstructure with a small amount of Cu(ss.Fe) particles. Morphological inhomogeneous macrostructure and uneven chemical compostion of QCr0.8/1Cr21Ni5Ti joint by EBW are the most important factor to result in decreasing joining strength.展开更多
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool...Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.展开更多
Bueckner's work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials.The difficulties in separating Stroh's six complex ...Bueckner's work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials.The difficulties in separating Stroh's six complex arguments involved in the integral for the dissimilar materials are overcome and thert the explicit function representations of the integral are given and studied in detail.It is found that the pseudo-orthogonal properties of the eigenfunction expansion form(EEF)for a crack presented previously in isotropic elastic cases,in isotopic bimaterial cases,and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases.The relation between Bueckner's work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stress- displacement state.Finally,some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.展开更多
Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that...Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that is hybrid laser welding system. After aluminum and steel were welded by laser hybrid welding process, the micro-structure investment and the micro-hardness test were carried out. Hybrid laser welding promises a bright future in joining technology of dissimilar materials for automotive components.展开更多
A crack is assumed to emanate from the tip of bonded dissimilar materials with the crack on the bisector of one of the bonded wedges. The problem is firstly divided into symmetric and anti-symmetric modes according to...A crack is assumed to emanate from the tip of bonded dissimilar materials with the crack on the bisector of one of the bonded wedges. The problem is firstly divided into symmetric and anti-symmetric modes according to the characteristics of the local geometry. By eigenexpansion method, the eigenequations for the two modes are derived, respectively, and the corresponding eigenvalues are obtained with different ratios of dissimilar material constants and angles of the wedges. The singularity of the crack is then analyzed by the eigenvalues that are less than one. The fields of displacement and stress in the vicinity of the tip of the crack are finally derived in an explicit form.展开更多
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and m...Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.展开更多
An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the i...An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method.展开更多
Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders p...Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.展开更多
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of...Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.展开更多
文摘This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.
文摘Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi_weight functions were obtained as virtual displacement and stress fields with eigenvalue?_lambda. Integral expression of fracture parameters, K Ⅰ and K Ⅱ, were obtained from reciprocal work theorem with semi_weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi_weight function method is a simple, convenient and high precision calculation method.
文摘Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding velocity. Microstructure and composition of the EBW joint were investigated by means of optical micrography and EDX analysis, mechanical properties of the joint were also tested. The results show that joint’s macrostructure was divided into three zones: top weld zone near QCr0.8 and bottom weld zone consisting of Cu(ss.Fe) with a certain amount of dispersedly distributed (α+ε) mixed microstructure, middle weld zone consisting of (α+ε) microstructure with a small amount of Cu(ss.Fe) particles. Morphological inhomogeneous macrostructure and uneven chemical compostion of QCr0.8/1Cr21Ni5Ti joint by EBW are the most important factor to result in decreasing joining strength.
文摘Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.
基金The project supported by the National Natural Science Foundation of China and the Graduate School of Xi'an Jiaotong University
文摘Bueckner's work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials.The difficulties in separating Stroh's six complex arguments involved in the integral for the dissimilar materials are overcome and thert the explicit function representations of the integral are given and studied in detail.It is found that the pseudo-orthogonal properties of the eigenfunction expansion form(EEF)for a crack presented previously in isotropic elastic cases,in isotopic bimaterial cases,and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases.The relation between Bueckner's work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stress- displacement state.Finally,some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.
文摘Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that is hybrid laser welding system. After aluminum and steel were welded by laser hybrid welding process, the micro-structure investment and the micro-hardness test were carried out. Hybrid laser welding promises a bright future in joining technology of dissimilar materials for automotive components.
文摘A crack is assumed to emanate from the tip of bonded dissimilar materials with the crack on the bisector of one of the bonded wedges. The problem is firstly divided into symmetric and anti-symmetric modes according to the characteristics of the local geometry. By eigenexpansion method, the eigenequations for the two modes are derived, respectively, and the corresponding eigenvalues are obtained with different ratios of dissimilar material constants and angles of the wedges. The singularity of the crack is then analyzed by the eigenvalues that are less than one. The fields of displacement and stress in the vicinity of the tip of the crack are finally derived in an explicit form.
文摘Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.
文摘An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method.
基金sponsored by the Prince Sattam bin Abdulaziz University via project number 2023/RV/018。
文摘Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.
基金Project(20140204070GX) supported by the Key Science and Technology of Jilin Province,China
文摘Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.