To improve the processing efficiency and the quality of orbital milling hole of aerospace Al-alloy, the big-pitch influence on cutting force and hole quality was studied experimentally. First, a program based on horiz...To improve the processing efficiency and the quality of orbital milling hole of aerospace Al-alloy, the big-pitch influence on cutting force and hole quality was studied experimentally. First, a program based on horizontal lathe was proposed based on kinematics analysis of orbital milling. Then, the cutting force at different stages and the hole quality with different pitches were measured. Results show that the axial force and radial force increase with the pitch amplification during orbital milling. However, the axial force in the orbital milling hole is about 8—10 times smaller than that in the conventional drilling. The diameter error of milling hole is 48—93 μm, and the surface roughness of milling hole is 1.2—1.7 μm. Finally, an orbital milling device with big pitch was designed.展开更多
Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but the...Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but these methods tend to reduce the initial strength of RCS. Synthesis of modified phenolic resin with direct-chain diacid DAn (/JS=6, where n means carbon amount) was studied here. The effects of the addition of modifying agent on molecular weight, gel time and softening point were investigated. Optimal addition of DAn (10% phenol) was obtained by testing the initial and retained flexural strengths of the modified resin. FT-IR spectra showed that carbonyl shifts to higher wave number. With the use of TG, SEM and strength loss curves, the relation between initial and retained strengths was analysed. Tests on the heated deformation curve, before and after resin modification, show that PF-DA10 has the characteristic of higher initial and retained strengths together.展开更多
The mechanical properties of a type of Al-alloy weld including strength, fracture tough-ness and ductility were comprehensively studied at different temperatures. The frac-ture behavior and weld micro features were al...The mechanical properties of a type of Al-alloy weld including strength, fracture tough-ness and ductility were comprehensively studied at different temperatures. The frac-ture behavior and weld micro features were also characterized. The surface crack test method was adopted to study the fracture toughness and a multiple specimen test ap-paratus was designed to perform the cryogenic experiments. The relationship between the mechanical properties and temperature was obtained together with the fracture toughness distribution in the weld.展开更多
The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates...The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMA W, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.展开更多
Four parameters of chemical bond havebeen used to span a feature space to classifyquasicrystal-forming Al-alloys from thatalloys without quasicrystal formationwith good result. Since the first quasicrystal-formingsyst...Four parameters of chemical bond havebeen used to span a feature space to classifyquasicrystal-forming Al-alloys from thatalloys without quasicrystal formationwith good result. Since the first quasicrystal-formingsystem, Al-Mn system, discovered by She-chtman in 1984[1], a series of quasicrystal-forming binary alloy systems have beenfound. Most of these systems are Al-contain-ing systems. Bancel has indicated thatthere are three factors affecting theformability of quasicrystals [2]: (1) ele-ctrochemical factor (this factor can be展开更多
Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes ...Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities.展开更多
Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental res...Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.展开更多
Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders p...Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.展开更多
Significant progress has been made in recent years in understanding and modelling the rheology of semi-solid metals.These models show the effects of the microstructure in terms of size and morphology of globules on th...Significant progress has been made in recent years in understanding and modelling the rheology of semi-solid metals.These models show the effects of the microstructure in terms of size and morphology of globules on the material response.More recently it has been shown that semi-solid metals can behave as compacted granular materials such as sand.A particular signature of such deformation is that the deformation becomes concentrated into shear bands which are 10-20 grains wide.Such bands have also been observed in a range of cast products.Recently, it has been clearly shown that shear bands in high pressure die cast (HPDC) products are also the results of Reynolds dilatancy.Shear bands are also known to be a common feature in semi-solid metal products.The segregation banding in semi-solid metal (SSM) material and its dependence of plunger velocity were investigated.Shaped castings were made with the RHEOMETALTM process with a range of different plunger velocities.The microstructural characteristics were investigated, with a particular emphasis on shear bands.It is shown that ingate velocities influence the location and characteristics of the shear bands.展开更多
An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and slid...An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.展开更多
Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (...Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCI solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000×10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+ concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+ and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness and voids of surface are increased.展开更多
The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-...The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-aminophenol acts as a perfect inhibitor because of its adsorbability and forming chelate complex at its optimum concentration of 0.4 mol/L. Stannate enhances the inhibition of o-aminophenol and improves the activity of Al-alloy because of its reduction to tin. There is synergetic effect of stannate with o-aminophenol on the behavior of Al-alloy, and the inhibitive efficiency at 55℃ is better than that at 25 ℃.展开更多
The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated.The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the app...The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated.The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the applied pressure of 30 MPa.The fluidity increased with superheat.The fluidity increased with silicon content in the range from 12.0% to 20.0%.That was decreased respectively by eutectic modification and primary silicon refinement.展开更多
Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transi...Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.展开更多
Press-finishing, a plastic deformation process, can be applied to raise surface precision of a workpiece. This paper introduces a new press-finishing technique for PCD (polycrystal diamond)tool that can press finishin...Press-finishing, a plastic deformation process, can be applied to raise surface precision of a workpiece. This paper introduces a new press-finishing technique for PCD (polycrystal diamond)tool that can press finishing the residual feed trails produced by the diamond tool on the machined surface. The experiments of press-finishing of Al-alloy have been performed on an instrument lathe with the press-finishing set-up with a PCD tool. Having investigated the correlation between the surface roughness (Rα)and parameters, such as press-finishing speed (v), feed (f),depth of press (αpp), PCD sphere diameter (Dsph), rigidity coefficient of spring (Ki) etc, the optimum parameters of technology.and their laws for the press-finishing of Al-alloy have been acquired. Some mechanisms for the press-finishing of Al-alloy with a PCD tool have been discussed. With appropriate parameters chosen, the sample of Al-alloy could be press-finished to a value of Ra =0.026μm from an initial roughness of Ra =0.5μm.展开更多
Aluminum alloy (Al-alloy) thin-walled (D/t > 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisf...Aluminum alloy (Al-alloy) thin-walled (D/t > 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisfying high strength to weigh ratio requirements of product manufacturing. However, due to nonlinear nature of bending with coupling effects of multiple factors, the similarity theory seems not applicable and there occurs a challenge for efficient and reliable evaluation of the bending formability of thin-walled tube with various bending specifications. Considering the unequal deformation and three major instabilities, the bending formability of thin-walled Al-alloy tube in changing tube sizes such as D and t are clarified via both the analytical and FE modeling/ simulations. The experiments of rotary draw bending are conducted to validate the theoretical models and further confirm 'size effect' related bending formability. The major results show that (1) The anti-wrinkling capability of tube decreases with the larger D and smaller t, and the effect significance of t is larger than that of D even under rigid supports; (2) The wall thinning increases with the larger D and smaller t, and this tendency becomes much more obvious under rigid supports; (3) The cross-section deformation increases with the larger D and smaller t according to the analytical model obtained intrinsic relationship, while this tendency becomes opposite due to the nonlinear role of mandrel die; (4) The size factor D/t can be used as a nondimensional index to evaluate both the bending formability regarding the wall thinning and cross-section deformation.展开更多
In-service Very-High-Cycle-Fatigue(VHCF)regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17and superalloy GS6K,respectively,was considered.Surface crack origination occurred at the lifetime ...In-service Very-High-Cycle-Fatigue(VHCF)regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17and superalloy GS6K,respectively,was considered.Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades.Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface.This material behavior reflected lifetime limit that was reached by the criterion VHCF.In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet.This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology.In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream.Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations.Recommendations to continue aircrafts airworthiness were made for in-service blades.展开更多
基金Supported by National Natural Science Foundation of China (No.50975141 and No.51005118)Aviation Science Fund (No.20091652018 and No.2010352005)
文摘To improve the processing efficiency and the quality of orbital milling hole of aerospace Al-alloy, the big-pitch influence on cutting force and hole quality was studied experimentally. First, a program based on horizontal lathe was proposed based on kinematics analysis of orbital milling. Then, the cutting force at different stages and the hole quality with different pitches were measured. Results show that the axial force and radial force increase with the pitch amplification during orbital milling. However, the axial force in the orbital milling hole is about 8—10 times smaller than that in the conventional drilling. The diameter error of milling hole is 48—93 μm, and the surface roughness of milling hole is 1.2—1.7 μm. Finally, an orbital milling device with big pitch was designed.
文摘Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but these methods tend to reduce the initial strength of RCS. Synthesis of modified phenolic resin with direct-chain diacid DAn (/JS=6, where n means carbon amount) was studied here. The effects of the addition of modifying agent on molecular weight, gel time and softening point were investigated. Optimal addition of DAn (10% phenol) was obtained by testing the initial and retained flexural strengths of the modified resin. FT-IR spectra showed that carbonyl shifts to higher wave number. With the use of TG, SEM and strength loss curves, the relation between initial and retained strengths was analysed. Tests on the heated deformation curve, before and after resin modification, show that PF-DA10 has the characteristic of higher initial and retained strengths together.
文摘The mechanical properties of a type of Al-alloy weld including strength, fracture tough-ness and ductility were comprehensively studied at different temperatures. The frac-ture behavior and weld micro features were also characterized. The surface crack test method was adopted to study the fracture toughness and a multiple specimen test ap-paratus was designed to perform the cryogenic experiments. The relationship between the mechanical properties and temperature was obtained together with the fracture toughness distribution in the weld.
文摘The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMA W, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.
文摘Four parameters of chemical bond havebeen used to span a feature space to classifyquasicrystal-forming Al-alloys from thatalloys without quasicrystal formationwith good result. Since the first quasicrystal-formingsystem, Al-Mn system, discovered by She-chtman in 1984[1], a series of quasicrystal-forming binary alloy systems have beenfound. Most of these systems are Al-contain-ing systems. Bancel has indicated thatthere are three factors affecting theformability of quasicrystals [2]: (1) ele-ctrochemical factor (this factor can be
基金National Natural Science Foundation of China (59975076, 50175092)National Science Fund of China for Distinguished Young Scholars (50225518)
文摘Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities.
基金supported by the National Natural Science Foundation of China(Grant No.19925211)jointly supported by"Bai Ren Plan"of Chinese Academy of Sciences.
文摘Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.
基金sponsored by the Prince Sattam bin Abdulaziz University via project number 2023/RV/018。
文摘Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.
文摘Significant progress has been made in recent years in understanding and modelling the rheology of semi-solid metals.These models show the effects of the microstructure in terms of size and morphology of globules on the material response.More recently it has been shown that semi-solid metals can behave as compacted granular materials such as sand.A particular signature of such deformation is that the deformation becomes concentrated into shear bands which are 10-20 grains wide.Such bands have also been observed in a range of cast products.Recently, it has been clearly shown that shear bands in high pressure die cast (HPDC) products are also the results of Reynolds dilatancy.Shear bands are also known to be a common feature in semi-solid metal products.The segregation banding in semi-solid metal (SSM) material and its dependence of plunger velocity were investigated.Shaped castings were made with the RHEOMETALTM process with a range of different plunger velocities.The microstructural characteristics were investigated, with a particular emphasis on shear bands.It is shown that ingate velocities influence the location and characteristics of the shear bands.
文摘An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.
文摘Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCI solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000×10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+ concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+ and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness and voids of surface are increased.
文摘The performance of Al-alloy anode in 4 mol/L KOH with and without stannate and o-aminophenol at 25℃ and 55℃ was studied by hydrogen collection, potentiodynamic polarization and electrochemical impedance spectrum, o-aminophenol acts as a perfect inhibitor because of its adsorbability and forming chelate complex at its optimum concentration of 0.4 mol/L. Stannate enhances the inhibition of o-aminophenol and improves the activity of Al-alloy because of its reduction to tin. There is synergetic effect of stannate with o-aminophenol on the behavior of Al-alloy, and the inhibitive efficiency at 55℃ is better than that at 25 ℃.
文摘The effects of processing variables on the fluidity of hypereutectic Al-Si alloy melt during squeeze casting were investigated.The maximum fluidity of Al-16.0%Si alloy during squeeze casting was obtained under the applied pressure of 30 MPa.The fluidity increased with superheat.The fluidity increased with silicon content in the range from 12.0% to 20.0%.That was decreased respectively by eutectic modification and primary silicon refinement.
文摘Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.
文摘Press-finishing, a plastic deformation process, can be applied to raise surface precision of a workpiece. This paper introduces a new press-finishing technique for PCD (polycrystal diamond)tool that can press finishing the residual feed trails produced by the diamond tool on the machined surface. The experiments of press-finishing of Al-alloy have been performed on an instrument lathe with the press-finishing set-up with a PCD tool. Having investigated the correlation between the surface roughness (Rα)and parameters, such as press-finishing speed (v), feed (f),depth of press (αpp), PCD sphere diameter (Dsph), rigidity coefficient of spring (Ki) etc, the optimum parameters of technology.and their laws for the press-finishing of Al-alloy have been acquired. Some mechanisms for the press-finishing of Al-alloy with a PCD tool have been discussed. With appropriate parameters chosen, the sample of Al-alloy could be press-finished to a value of Ra =0.026μm from an initial roughness of Ra =0.5μm.
基金the National Natural Science Foundation of China (No. 50905144)the Program for New Century Excellent Talents in University, the Natural Science Basic Research Plan in Shaanxi Province (No. 2011JQ6004)the 111 Project (No. B08040) for the support given to this research
文摘Aluminum alloy (Al-alloy) thin-walled (D/t > 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisfying high strength to weigh ratio requirements of product manufacturing. However, due to nonlinear nature of bending with coupling effects of multiple factors, the similarity theory seems not applicable and there occurs a challenge for efficient and reliable evaluation of the bending formability of thin-walled tube with various bending specifications. Considering the unequal deformation and three major instabilities, the bending formability of thin-walled Al-alloy tube in changing tube sizes such as D and t are clarified via both the analytical and FE modeling/ simulations. The experiments of rotary draw bending are conducted to validate the theoretical models and further confirm 'size effect' related bending formability. The major results show that (1) The anti-wrinkling capability of tube decreases with the larger D and smaller t, and the effect significance of t is larger than that of D even under rigid supports; (2) The wall thinning increases with the larger D and smaller t, and this tendency becomes much more obvious under rigid supports; (3) The cross-section deformation increases with the larger D and smaller t according to the analytical model obtained intrinsic relationship, while this tendency becomes opposite due to the nonlinear role of mandrel die; (4) The size factor D/t can be used as a nondimensional index to evaluate both the bending formability regarding the wall thinning and cross-section deformation.
文摘In-service Very-High-Cycle-Fatigue(VHCF)regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17and superalloy GS6K,respectively,was considered.Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades.Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface.This material behavior reflected lifetime limit that was reached by the criterion VHCF.In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet.This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology.In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream.Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations.Recommendations to continue aircrafts airworthiness were made for in-service blades.