Transparent conducting aluminum doped tin oxide thin films were prepared by sol-gel dip coating method with differ-ent Al concentrations and characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-...Transparent conducting aluminum doped tin oxide thin films were prepared by sol-gel dip coating method with differ-ent Al concentrations and characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectrophotometry and photoconductivity study. The variation observed in the properties of the measured films agrees with a difference in the film's thickness, which decreases when Al concentration augments. X-ray diffraction analysis reveals that all films are polycrystal-line with tetragonal structure, (110) plane being the strongest diffraction peak. The crystallite size calculated by the Debye Scher-rer’s formula decreases from 11.92 to 8.54 nm when Al concentration increases from 0 to 5 wt.%. AFM images showed grains uni-formly distributed in the deposited films. An average transmittance greater than 80% was measured for the films and an en-ergy gap value of about 3.9 eV was deduced from the optical analysis. Finally, the photosensitivity properties like current-voltage characteristics, ION/IOFF ratio, growth and decay time are studied and reported. Also, we have calculated the trap depth energy using the decay portion of the rise and decay curve photocurrent.展开更多
The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear suscep...The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10-10 esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.展开更多
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru...Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of...Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of the AZO sample is increased from 0.34%to 23.6%through wet etching treatment between 380 and 1100nm,and the etched AZO sample has a higher average transmittance of about 82.3%in infrared wavelength range from 760 to 1100nm due to the reduction of absorption by carriers.The average hardness and elastic modulus of the as-deposited AZO films,as determined using the nanoindentation technique,are approximately 10.2 GPa and 130 GPa,respectively.The critical fracture load related to the adhesion strength is about 91 mN.The optimized optical and electrical properties and referable mechanical data indicate that AZO films have good prospects for commercial applications.展开更多
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe...Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv...Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications.展开更多
Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize th...Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.展开更多
This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same ...This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same sample series but with the focus of explaining the interplay between the catalytic behavior and properties of the cuprous thin films.A superior catalytic performance was demonstrated when water was added in the deposition process[1](see Ref.[47]in our publication corrected here).展开更多
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size...Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).展开更多
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La...Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.展开更多
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af...The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.展开更多
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom...The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control.展开更多
With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commerc...With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability.展开更多
Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Co...Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.展开更多
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
基金support of the laboratory of active components and materials,Oum El Bouaghi University.
文摘Transparent conducting aluminum doped tin oxide thin films were prepared by sol-gel dip coating method with differ-ent Al concentrations and characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectrophotometry and photoconductivity study. The variation observed in the properties of the measured films agrees with a difference in the film's thickness, which decreases when Al concentration augments. X-ray diffraction analysis reveals that all films are polycrystal-line with tetragonal structure, (110) plane being the strongest diffraction peak. The crystallite size calculated by the Debye Scher-rer’s formula decreases from 11.92 to 8.54 nm when Al concentration increases from 0 to 5 wt.%. AFM images showed grains uni-formly distributed in the deposited films. An average transmittance greater than 80% was measured for the films and an en-ergy gap value of about 3.9 eV was deduced from the optical analysis. Finally, the photosensitivity properties like current-voltage characteristics, ION/IOFF ratio, growth and decay time are studied and reported. Also, we have calculated the trap depth energy using the decay portion of the rise and decay curve photocurrent.
文摘The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10-10 esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.
基金the Program for New Century Excellent Talents in Universities, MOE, China (No. NCET-05-0764)the Tackle Key Problems on Scientific Technology Foundation of Chongqing Municipality (Nos. CSTC2005AA4006-A6 and CSTC2004AC4034)+2 种基金the Natural Science Foundation of Chongqing Municipality (No. CSTC2005BA4016)China Postdoctoral Science Foundation (No. 2005037544)the Inno-base for Graduates of Chongqing University (No. 200506Y1B0240131).
文摘Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金Supported by the National Natural Science Foundation of China under Grant No 51001081the Introduction of Talent Foundation of Tianjin Normal University under Grant No 5RL075the Science and Technology Development Fund Planning Project of Tianjin Colleges and Universities under Grant No 20081101.
文摘Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of the AZO sample is increased from 0.34%to 23.6%through wet etching treatment between 380 and 1100nm,and the etched AZO sample has a higher average transmittance of about 82.3%in infrared wavelength range from 760 to 1100nm due to the reduction of absorption by carriers.The average hardness and elastic modulus of the as-deposited AZO films,as determined using the nanoindentation technique,are approximately 10.2 GPa and 130 GPa,respectively.The critical fracture load related to the adhesion strength is about 91 mN.The optimized optical and electrical properties and referable mechanical data indicate that AZO films have good prospects for commercial applications.
基金supported by the National Natural Science Foundation of China(Nos.52277024,U20A20308)Natural Science Foundation of Heilongjiang Province(No.YQ2020E031)+3 种基金China Postdoctoral Science Foundation(Nos.2021T140166,2018M640303)Heilongjiang Province Postdoctoral Science Foundation(No.LBH-Z18099)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020178)the support from the China Scholarship Council(CSC)
文摘Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金supported by the National Natural Science Foundation of China(Grant No.62001338)the Open Funds for Sanya Science and Education Park(Grant No.2021KF0018)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2021IVB029)
文摘Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications.
基金supported by National Natural Science Foundation of China(Nos.1100502151177017 and 11175049)+1 种基金the Fudan University Excellent Doctoral Research Program(985 Project) the Ph.D Programs Foundation of Ministry of Education of China(No.20120071110031)
文摘Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.
文摘This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same sample series but with the focus of explaining the interplay between the catalytic behavior and properties of the cuprous thin films.A superior catalytic performance was demonstrated when water was added in the deposition process[1](see Ref.[47]in our publication corrected here).
基金supported by the National Natural Science Foundation of China(Grant No.12241403)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1403000)the Na-tional Natural Science Foundation of China(Grant No.12250710675).
文摘Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.
基金We thank the National Natural Science Foundation of China(52203217 and 21961160720)the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)for financial support.
文摘The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.
基金Project supported by Scientific Research Funds(Grant No.7001/700199)Henan Provincial Department Scientific Research Project(Grant No.22A430034).
文摘The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control.
基金financial support provided by Liaoning Revitalization Talents Program(XLYC2007171)the Natural Science Foundation of Liaoning Province(2021-MS-321)Research funding project of Liaoning Provincial Education Department(LJKZZ20220086)。
文摘With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability.
基金Funded by National Natural Science Foundation of China(NSFC)(Nos.21205127,61275114)
文摘Al-doped zinc oxide(AZO) and Ga-doped zinc oxide(GZO) thin films with the same doping concentration(3.6 at%) were deposited on glass substrates at room temperature by direct current(DC) magnetron sputtering.Consequently,we comparatively studied the doped thin films on the basis of their structural,morphological,electrical,and optical properties for optoelectronic applications.Both thin films exhibited excellent optical properties with more than 85%transmission in the visible range.The GZO thin film had better crystallinity and smoother surface morphology than the AZO thin film.The conductivity of the GZO thin film was improved compared to that of the AZO thin film:the resistivity decreased from 1.01×10^-3 to 3.5×10^-4 Ω cm,which was mostly due to the increase of the carrier concentration from 6.5×10^20 to 1.46×10^21cm^-3.These results revealed that the GZO thin film had higher quality than the AZO thin film with the same doping concentration for optoelectronic applications.
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.