A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave...A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.展开更多
Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including cryst...Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.展开更多
Cubic C3N4 compound in the C-N thin films on Si and NaCl substrates was prepared by ion beam sputtering of a pure graphite target with discharge gas of pure N2. X-ray photoelectron spectroscopy indicated that nitrogen...Cubic C3N4 compound in the C-N thin films on Si and NaCl substrates was prepared by ion beam sputtering of a pure graphite target with discharge gas of pure N2. X-ray photoelectron spectroscopy indicated that nitrogen atoms combined with sp2- and sp3- coordinated C atoms in the film, respectively. X-ray diffraction, selected area electron diffraction and high-resolution electron microscopy were used to identify the cubic C3N4 phase. The results reconfirm the ab initio calculations on metastable structure in C-N compounds展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the opti...The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.展开更多
With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearin...With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearing steel by ion beam assisted deposition for improving the performance of bearing steels. The Vicker's microhardness, pin-on-disc, electrochemical measurement, XRD and SEM tests were used to characterize and analyze the treated samples. All results indicated that the mechanical properties of the treated samples were good, with the microhardness greater than that of the uncoated specimen, and the wear resistance, the passivity and pitting corrosion resistance increased considerably, the films possessed alternate Cr and CrN compound phases and produced different effects on the improvement of the performance of W9Cr4V2Mo bearing steels with different composing phases.展开更多
Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.He...Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.Here,a universal and straightforward strategy to generate composite bilayer films with organic compoundtriggered bending properties is demonstrated.The composite bilayer films with organic compound-triggered bending properties are designed with bilayer structures,in which one layer is a porous polymeric membrane with appropriate solubility parameter that matches the value of organic solvents in order to produce prominent affinity to the solvent molecules,and the other layer is reduced graphene oxide membrane stacked on the porous polymeric membrane as an inert layer for restraining the swelling of the polymeric membrane on one side.Guided by matching the solubility parameters between solvent and polymer,a significant bending curvature of 27.3 cm-1 is obtained in acetone vapor.The results in this study will provide valuable guidance for designing and developing functional composite materials with significant organic compound-triggered bending properties.展开更多
The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosi...The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosion resistance of conversion films was analyzed by electro interstitial scanning (EIS). The results show that silane coupling agent KH-570 has significant influence on the compactness and homogeneity of cerium conversion films, and the process of film forming is promoted by increasing the content of tervalent and tetravalent cerium oxide. The impedance value of the cerium conversion film, especially modified with KH-570, is greater than that of the base metal, which reveals that it is necessary to add silane coupling agent to the film-forming solution in order to improve the corrosion resistance of the conversion film.展开更多
In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction sp...In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction spectra. The shift of the dominant A1 mode, unlike the lattice constants, does not follow the linear Vegard law with increasing Ga content x, whereas exhibits approximately polynomial change from 174 cm^-1 for CuInSe2 to 185 cm^-1 for CuGaSe2. Such behaviour should be indicative of presence of the asymmetric distribution of Ga and In on a microscopic scale in the films, due to Ga addition. The changes in the tetragonal distortion η lead to a significant variation in the anion displacement parameter U, which should be responsible for the evolution of bond parameters and resultant Raman bands with x.展开更多
Phenolic compounds are among the major classes of pollutants produced by industrial and agricultural activities. The amperometric biosensors have been mainly applied to the determination of phenolic compounds because ...Phenolic compounds are among the major classes of pollutants produced by industrial and agricultural activities. The amperometric biosensors have been mainly applied to the determination of phenolic compounds because of the advantages such as good selectivity, low cost, and easy automation. Amperometry is a method to measure the electric current that flows as a result of reactions generated at the electrode. Amperometric phenol biosensors are most often based on tyrosinase, laccase or horseradish peroxidase immobilized on the electrode surface. The immobilization of enzymes into ordered thin materials has attracted considerable attention over the past few years. The present researches have demonstrated that biomolecules immobilized in different matrixes retain their functional characteristics to a large extent. These new materials are of great interest for applications as biosensors and biocatalysts. Lately, also conducting polymers have attracted much interest in the development of biological sensors. The electrically conducting polymers are known as possessing many interesting features, which allow them to act as excellent materials for immobilization of biomolecules.展开更多
Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isoprop...Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.展开更多
The feasibility of photocatalytic degradation of organochlorine compounds using TiO 2 supported on fiberglass cloth as a photocatalyst was studied. The results showed that 2 0×10 -4 mol/dm 3 of dichloroeth...The feasibility of photocatalytic degradation of organochlorine compounds using TiO 2 supported on fiberglass cloth as a photocatalyst was studied. The results showed that 2 0×10 -4 mol/dm 3 of dichloroethylene, trichloroethylene and tetrachloroethylene can be completely photocatalytically degraded within a short time under illumination with a 375W medium pressure mercury lamp. The effects of parameters such as illumination time, initial concentration of organochlorine compounds, amount of air flow and concentration of H 2O 2 on the photocatalytic degradation were investigated. The TiO 2 supported on the fiberglass was not easily detached and after 500h illumination there was no significant loss of photocatalytic activity of TiO 2. The passible mechanisms of photocatalytic degradation were discussed.展开更多
With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate su...With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.展开更多
文摘A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A.
文摘Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.
文摘Cubic C3N4 compound in the C-N thin films on Si and NaCl substrates was prepared by ion beam sputtering of a pure graphite target with discharge gas of pure N2. X-ray photoelectron spectroscopy indicated that nitrogen atoms combined with sp2- and sp3- coordinated C atoms in the film, respectively. X-ray diffraction, selected area electron diffraction and high-resolution electron microscopy were used to identify the cubic C3N4 phase. The results reconfirm the ab initio calculations on metastable structure in C-N compounds
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金supported by a key project of Liaoning Province (2006215005)China Ministry of Education (209032)
文摘The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.
基金The project supported by National Natural Science Foundation of China (No. 90205001)
文摘With the development of industry, much attention has been paid to lengthening the life span of bearings. As reported in this paper, we investigated the Cr/CrN compound films formed on the specimens of W9Cr4V2Mo bearing steel by ion beam assisted deposition for improving the performance of bearing steels. The Vicker's microhardness, pin-on-disc, electrochemical measurement, XRD and SEM tests were used to characterize and analyze the treated samples. All results indicated that the mechanical properties of the treated samples were good, with the microhardness greater than that of the uncoated specimen, and the wear resistance, the passivity and pitting corrosion resistance increased considerably, the films possessed alternate Cr and CrN compound phases and produced different effects on the improvement of the performance of W9Cr4V2Mo bearing steels with different composing phases.
基金Supported by the National Natural Science Foundation of China(21490582,21622604)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)the State Key Laboratory of Polymer Materials Engineering(sklpme2017-3-03,sklpme2014-1-01).
文摘Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.Here,a universal and straightforward strategy to generate composite bilayer films with organic compoundtriggered bending properties is demonstrated.The composite bilayer films with organic compound-triggered bending properties are designed with bilayer structures,in which one layer is a porous polymeric membrane with appropriate solubility parameter that matches the value of organic solvents in order to produce prominent affinity to the solvent molecules,and the other layer is reduced graphene oxide membrane stacked on the porous polymeric membrane as an inert layer for restraining the swelling of the polymeric membrane on one side.Guided by matching the solubility parameters between solvent and polymer,a significant bending curvature of 27.3 cm-1 is obtained in acetone vapor.The results in this study will provide valuable guidance for designing and developing functional composite materials with significant organic compound-triggered bending properties.
文摘The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosion resistance of conversion films was analyzed by electro interstitial scanning (EIS). The results show that silane coupling agent KH-570 has significant influence on the compactness and homogeneity of cerium conversion films, and the process of film forming is promoted by increasing the content of tervalent and tetravalent cerium oxide. The impedance value of the cerium conversion film, especially modified with KH-570, is greater than that of the base metal, which reveals that it is necessary to add silane coupling agent to the film-forming solution in order to improve the corrosion resistance of the conversion film.
基金Project supported by China Postdoctoral Science Foundation (Grant No 2005037539), and the National High-Tech Research and Development Programm of China (Grant No 2004AA513020). Acknowledgments 0ne of the authors (Xu Chuan-Ming) gratefully acknowledges Professor Xu Cun-Yi from the Structure Research Laboratory of Chinese Academy of Sciences for the sample measurements.
文摘In this paper the dependence of structural properties of the quaternary CuIn1-xGaxSe2 films with tetragonal structure on the Ga content has been systematically investigated by Raman scattering and x-ray diffraction spectra. The shift of the dominant A1 mode, unlike the lattice constants, does not follow the linear Vegard law with increasing Ga content x, whereas exhibits approximately polynomial change from 174 cm^-1 for CuInSe2 to 185 cm^-1 for CuGaSe2. Such behaviour should be indicative of presence of the asymmetric distribution of Ga and In on a microscopic scale in the films, due to Ga addition. The changes in the tetragonal distortion η lead to a significant variation in the anion displacement parameter U, which should be responsible for the evolution of bond parameters and resultant Raman bands with x.
基金Financial support from the Wroclaw University of Technology and Polish Ministry of Science and Higher Education Grant No.2012/05/B/ST5/00749
文摘Phenolic compounds are among the major classes of pollutants produced by industrial and agricultural activities. The amperometric biosensors have been mainly applied to the determination of phenolic compounds because of the advantages such as good selectivity, low cost, and easy automation. Amperometry is a method to measure the electric current that flows as a result of reactions generated at the electrode. Amperometric phenol biosensors are most often based on tyrosinase, laccase or horseradish peroxidase immobilized on the electrode surface. The immobilization of enzymes into ordered thin materials has attracted considerable attention over the past few years. The present researches have demonstrated that biomolecules immobilized in different matrixes retain their functional characteristics to a large extent. These new materials are of great interest for applications as biosensors and biocatalysts. Lately, also conducting polymers have attracted much interest in the development of biological sensors. The electrically conducting polymers are known as possessing many interesting features, which allow them to act as excellent materials for immobilization of biomolecules.
文摘Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.
文摘The feasibility of photocatalytic degradation of organochlorine compounds using TiO 2 supported on fiberglass cloth as a photocatalyst was studied. The results showed that 2 0×10 -4 mol/dm 3 of dichloroethylene, trichloroethylene and tetrachloroethylene can be completely photocatalytically degraded within a short time under illumination with a 375W medium pressure mercury lamp. The effects of parameters such as illumination time, initial concentration of organochlorine compounds, amount of air flow and concentration of H 2O 2 on the photocatalytic degradation were investigated. The TiO 2 supported on the fiberglass was not easily detached and after 500h illumination there was no significant loss of photocatalytic activity of TiO 2. The passible mechanisms of photocatalytic degradation were discussed.
基金National Natural Science Foundation of China (50502028, 50336040)The Outstanding Youth Foundation of North-western Polytechnical University
文摘With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.