The high-temperature phase transition of tobermofite was investigated by TGA/DSC, X-ray diffraction and Infrared spectroscopy (IR), respectively. The experimental results showed that Si-OH bonds were cleaved at 724...The high-temperature phase transition of tobermofite was investigated by TGA/DSC, X-ray diffraction and Infrared spectroscopy (IR), respectively. The experimental results showed that Si-OH bonds were cleaved at 724℃ and dehydroxylation occured at the same time, implying that the crystal structure of tobermorite was broken. As a result, the dehydroxylatiun tobermorite was metastable state, exhibiting obviously hydrolysis activity. The suspension was alkaline and Ca^2+ ions content reached a maximum value 4.76% after heat treatment at 724℃. The dehydroxylation tobermorite had potential reactive activity due to the strong hydrolysis activity. The disordered structure recombined to wollastonite, and the crystal structure became ordering and stable at 861℃. Finally, 2M-wollastonite structure can be found in the sample as the temperature reached up to 1 000℃.展开更多
A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. Th...A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of Si O2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquo containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Baye process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al_2O_3 and mass ratio of alumina to silica(A/S) of 5.9pure 1.1 nm tobermorite whisker and TiO_2-rich material containing 33% TiO_2 are produced, respectively, with the optimal parameters Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 oC for 40 min in the Bayer process.展开更多
The difference between the systems of CaO-SiO2,-H2O and CaO-SiO2-Al(OH)3,-H2O, was studied, especially the effect of Al3+on the crystallinity of tobermorite was focussed. As a result, in the system of CaO-SiO2-H2O, to...The difference between the systems of CaO-SiO2,-H2O and CaO-SiO2-Al(OH)3,-H2O, was studied, especially the effect of Al3+on the crystallinity of tobermorite was focussed. As a result, in the system of CaO-SiO2-H2O, tobermorite formed early, however, withreaction time forward, tobermorite was replaced by xonotlite. So far as CaO-SiO2-Al(OH)3,-H2O was concemed, hydrothermal reactionwas cdried out under the same condition as CaO-SiO2-H2O to study the morphological changes of tobermorite crystals. It was found thatAl3+ accelefated the crystal growth of tobermorite to some extent and was in faVor ofplaty crystals. Moreovef, with the Al3+ content in-creasing in the starting material, the morphology of tobermorite did not change magnificently, but platy crystals became more and moreeminent. As soon as the Al2O3 content was over 15.6%, synthetic mineral greatly changed in smicthe and haled into hibschite differentfrom 1 .1 nm tobermorite. Obviously, xonotlite was not apt to form in the presence of Al3+.展开更多
The objective of the present work was to investigate the transition reaction of the calcium silicate hydrate tobermorite into xonotlite under influence of additives. Tobermorite is the main binding agent in steam hard...The objective of the present work was to investigate the transition reaction of the calcium silicate hydrate tobermorite into xonotlite under influence of additives. Tobermorite is the main binding agent in steam hardened building materials and the appearance of xonotlite indicates the progress of hardening and an overcuring of the material. Hydrothermal experiments under addition of sucrose, calcium formate and calcium chloride dihydrate to the main components quartz and lime were done using temperatures of 220°C and a reaction time of 40.5 h. All experiments were performed with powders as well as with pressed educts. The products of all syntheses were analyzed with XRD, SEM/EDX and FTIR. The references as well as the syntheses with calcium chloride dihydrate led to the formation of 11 Å tobermorite and xonotlite. The former showed the best results and even synthesis with pressed educts and calcium chloride dihydrate revealed an accelerating effect of the additive. In contrast syntheses with sucrose had the worst reactivity and led to the formation of calcite beside the CSH-phase scawtite. The additive calcium formate was only slightly oppressing the crystallization of tobermorite and favouring the formation of xonotlite. Syntheses with pressed pellets and sucrose or calcium formate showed generally worse results.展开更多
This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite...This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite and calcite to lime.Characteristics obtained by in situ high temperature X-ray diffraction,field emission scanning electron microscopy and scanning transmission electron microscopy analyses jointly indicate that the investigated tobermorite is anomalous.The variations along the a,b,c axes and the volume changes of tobermorite with increasing temperature are described,and its thermal shrinkage coefficients therefore determined.The comparison between the refined structures at 30℃ and 800℃ demonstrates that the shrinkage degree(Δa/a0)along the a axis is higher than those(Δb/b0,Δc/c0)along the b and c axes.The wollastonite is formed in two ways:Tobermorite converting to wollastonite and lime reacting with quartz to form wollastonite.展开更多
Calcium-Silicate-Hydrate-phases (CSH-phases) are important binding agents of building materials. The synthesis of CSH phases and their structural characterization was done to investigate the crystallization in depende...Calcium-Silicate-Hydrate-phases (CSH-phases) are important binding agents of building materials. The synthesis of CSH phases and their structural characterization was done to investigate the crystallization in dependence of an increasing CaO/SiO2 ratio (C/S ratios) from 0.41 up to 1.66 at temperatures in the crossover region of tobermorite to xonotlite (180℃ and 230℃). Parallel runs with the same C/S ratio but on the one hand with constant mass of quartz and variation of lime and on the other hand under reverse conditions (constant mass of lime but variable amounts of quartz) were performed at both temperatures. The aim was to clarify the connections of crystallization mechanism and kinetics of phase formation with structure, crystallinity and morphology of the CSH’s in the mentioned C/S ratio for both temperatures in the tobermorite-xonotlite crossover region. The parallel experiments with different mass ratios of the educts are important to study the influence of time evaluation of supersaturation within the solution under the peculiarities of the retrograde solubility of lime but accelerated solubility of quartz. The products were characterized by XRD, SEM/EDX, FTIR and 29Si MAS NMR spectroscopy (using the Q-site nomenclature [1]). The experiments could clarify some important connections of crystallization process and the reaction pathway.展开更多
Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted ba...Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.展开更多
基金Funded by the National Natural Science Foundation of China(No.11134004)the National Science and Technology Major Project(No.2012ZX04010032)+2 种基金the natural science foundation of Ningxia(No.NZ12157)the Project of Jiangsu Constructive Department(No.201007100002)the Graduate Innovation and Creativity Foundation of Jiangsu Province(No.CXZZ11-0243)
文摘The high-temperature phase transition of tobermofite was investigated by TGA/DSC, X-ray diffraction and Infrared spectroscopy (IR), respectively. The experimental results showed that Si-OH bonds were cleaved at 724℃ and dehydroxylation occured at the same time, implying that the crystal structure of tobermorite was broken. As a result, the dehydroxylatiun tobermorite was metastable state, exhibiting obviously hydrolysis activity. The suspension was alkaline and Ca^2+ ions content reached a maximum value 4.76% after heat treatment at 724℃. The dehydroxylation tobermorite had potential reactive activity due to the strong hydrolysis activity. The disordered structure recombined to wollastonite, and the crystal structure became ordering and stable at 861℃. Finally, 2M-wollastonite structure can be found in the sample as the temperature reached up to 1 000℃.
基金Projects(51234008,51174230)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0515)supported by the Program for New Century Excellent Talents in University,ChinaProject supported by Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘A large amount of coal gangue from coal mining and processing is regarded as waste and usually stockpiled directly. In order to recycle the valuable elements from the coal gangue, an integrated process is proposed. The process consists of three steps: 1concentrating alumina from the coal gangue via activation roasting followed by alkali leaching of Si O2 which produces alumina concentrate for alumina extraction by the Bayer process; 2) synthesizing tobermorite whiskers from the filtrated alkali liquo containing silicate via a hydrothermal method and reusing excess caustic liquor; and 3) enriching titanium component from the Baye process residue by sulfuric acid leaching. Alumina concentrate with 69.5% Al_2O_3 and mass ratio of alumina to silica(A/S) of 5.9pure 1.1 nm tobermorite whisker and TiO_2-rich material containing 33% TiO_2 are produced, respectively, with the optimal parameters Besides, the actual alumina digestion ratio of alumina concentrate reaches 80.4% at 270 oC for 40 min in the Bayer process.
文摘The difference between the systems of CaO-SiO2,-H2O and CaO-SiO2-Al(OH)3,-H2O, was studied, especially the effect of Al3+on the crystallinity of tobermorite was focussed. As a result, in the system of CaO-SiO2-H2O, tobermorite formed early, however, withreaction time forward, tobermorite was replaced by xonotlite. So far as CaO-SiO2-Al(OH)3,-H2O was concemed, hydrothermal reactionwas cdried out under the same condition as CaO-SiO2-H2O to study the morphological changes of tobermorite crystals. It was found thatAl3+ accelefated the crystal growth of tobermorite to some extent and was in faVor ofplaty crystals. Moreovef, with the Al3+ content in-creasing in the starting material, the morphology of tobermorite did not change magnificently, but platy crystals became more and moreeminent. As soon as the Al2O3 content was over 15.6%, synthetic mineral greatly changed in smicthe and haled into hibschite differentfrom 1 .1 nm tobermorite. Obviously, xonotlite was not apt to form in the presence of Al3+.
文摘The objective of the present work was to investigate the transition reaction of the calcium silicate hydrate tobermorite into xonotlite under influence of additives. Tobermorite is the main binding agent in steam hardened building materials and the appearance of xonotlite indicates the progress of hardening and an overcuring of the material. Hydrothermal experiments under addition of sucrose, calcium formate and calcium chloride dihydrate to the main components quartz and lime were done using temperatures of 220°C and a reaction time of 40.5 h. All experiments were performed with powders as well as with pressed educts. The products of all syntheses were analyzed with XRD, SEM/EDX and FTIR. The references as well as the syntheses with calcium chloride dihydrate led to the formation of 11 Å tobermorite and xonotlite. The former showed the best results and even synthesis with pressed educts and calcium chloride dihydrate revealed an accelerating effect of the additive. In contrast syntheses with sucrose had the worst reactivity and led to the formation of calcite beside the CSH-phase scawtite. The additive calcium formate was only slightly oppressing the crystallization of tobermorite and favouring the formation of xonotlite. Syntheses with pressed pellets and sucrose or calcium formate showed generally worse results.
文摘This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite and calcite to lime.Characteristics obtained by in situ high temperature X-ray diffraction,field emission scanning electron microscopy and scanning transmission electron microscopy analyses jointly indicate that the investigated tobermorite is anomalous.The variations along the a,b,c axes and the volume changes of tobermorite with increasing temperature are described,and its thermal shrinkage coefficients therefore determined.The comparison between the refined structures at 30℃ and 800℃ demonstrates that the shrinkage degree(Δa/a0)along the a axis is higher than those(Δb/b0,Δc/c0)along the b and c axes.The wollastonite is formed in two ways:Tobermorite converting to wollastonite and lime reacting with quartz to form wollastonite.
文摘Calcium-Silicate-Hydrate-phases (CSH-phases) are important binding agents of building materials. The synthesis of CSH phases and their structural characterization was done to investigate the crystallization in dependence of an increasing CaO/SiO2 ratio (C/S ratios) from 0.41 up to 1.66 at temperatures in the crossover region of tobermorite to xonotlite (180℃ and 230℃). Parallel runs with the same C/S ratio but on the one hand with constant mass of quartz and variation of lime and on the other hand under reverse conditions (constant mass of lime but variable amounts of quartz) were performed at both temperatures. The aim was to clarify the connections of crystallization mechanism and kinetics of phase formation with structure, crystallinity and morphology of the CSH’s in the mentioned C/S ratio for both temperatures in the tobermorite-xonotlite crossover region. The parallel experiments with different mass ratios of the educts are important to study the influence of time evaluation of supersaturation within the solution under the peculiarities of the retrograde solubility of lime but accelerated solubility of quartz. The products were characterized by XRD, SEM/EDX, FTIR and 29Si MAS NMR spectroscopy (using the Q-site nomenclature [1]). The experiments could clarify some important connections of crystallization process and the reaction pathway.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.0452nm049)
文摘Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.