期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CODEPOSITION OF ALUMINUM AND SILICON ON PURE MOLYBDENUM SUBSTRATE USING HALIDE ACTIVATED PACK CEMENTATION TREATMENTS 被引量:4
1
作者 J.L. Xu, F.S. Liu, C.G. Zhou, S.K. Gong and H.B. Xu Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第2期167-171,共5页
A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance b... A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance by developing hexagonal Mo(Si, Al)2 through the development of the halide activated pack cementation coating process on pure Mo substrate. The results show that Mo(Si, Al)2 formed as a main phase on the surface and a little amount of Mo5Si3 also formed. The total thickness of coating is tens ofμm at 1373K. During the cyclic oxidation test at high temperature(at about 1323K in air), mullite (3Al2O3.2SiO2) and some SiO2 formed. The addition of Al is beneficial for MoSi2 coating and the Al-doped coating exhibited only a small weight gain and protected the Mo substrate, while the MoSi2 coating without Al suffered a significant weight loss, indicating a loss of volatile MoO3 after cycles. 展开更多
关键词 multi-component coating Mo(Si A1)2 halide activated pack cementation 3al2 o3. 2sio2 oxidation resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部