The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a ni...TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried...Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.展开更多
Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particula...Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.展开更多
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi...Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.展开更多
The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning elect...The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, s...Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.展开更多
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were...Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.展开更多
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.
基金supported by the Science Technology Foundation of Shanghai (072305113)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Science Technology Foundation of Shanghai Institute of Technology (KJ2008-07)
文摘TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
基金This research was supported by Jilin Province Science Foundation (No. 20090552).
文摘Al2O3p/Al composite coatings were prepared on the surface of AZ31 magnesium alloy by plasma spraying technology with mixed powders of Al and Al2O3. An orthogonal test containing six factors and five levels was carried out to acquire the optimum technical parameters. Mierostruetures and properties of the composite coatings were studied. The results show that the coatings consist of Al2O3 particulates distributed uniformly and Al matrix, and the interface between the particulate and matrix is continuous, compact and clean. With increasing the mass fraction of Al2O3 in the mixed powders, the volume fraction of Al2O3 in the coatings iacreases. The Al2O3p/Al composite coating with 14% Al2O3 volume fraction has more compact microstrueture and more satisfactory properties.
基金the National Natural Science Foundation of China (No50635030)the National Basic Research of China (No2007CB616913)the Program for New Century Excellent Talents in University (2005)
文摘Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.
文摘Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.
文摘The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800 ℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction(XRD) and energy dispersive spectrum(EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金financially supported by the Ministry of Education of China(No.625010312)
文摘Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
基金Project(2012MS0801)supported by the Natural Science Foundation of Inner Mongolia,China
文摘Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.