The ab initio method has been performed to explore the elastic and optical properties of Al3Sc compound, based on a plane wave pseudopotential method. It can be seen that the calculated equilibrium lattice parameter a...The ab initio method has been performed to explore the elastic and optical properties of Al3Sc compound, based on a plane wave pseudopotential method. It can be seen that the calculated equilibrium lattice parameter and elastic constants are in reasonable agreement with the previous experimental data. The elastic constants satisfy the requirement for mechanical stability in the cubic structure of the Al3Sc compound. The optical property calculations show that a strong absorptive peak exists from O-15eV and a relative small absorptive peak exists around 30eV. The form is caused by the optical transitions between high s, p, and d bands, and the latter results from the optical transitions from high s, p, and d bands to the low 2p band.展开更多
Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of th...Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of the functional devices.In this study,the microstructure in as-c as ted Al-20%Sc(in atomic ratio)alloys is characterized and the feathery Al3Sc grains with twin relationships are reported for the first time.The crystallographic features of twined structures and growth directions are quantitatively analyzed by electron backscatter diffraction(EBSD)technique.展开更多
This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is obser...This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.展开更多
A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coher...A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coherent dispersoids and grow by sacrificing the latter.While the dispersoid size greater than^40 nm,Q' and U2 phases are additionally produced that nucleate on the dislocations induced by the semi-/incoherent dispersoids.Mechanical and electrical properties are highly sensitive to the Al3 Sc dispersoid-tuned precipitation.The co-precipitation of β",Q' and U2 phases leads to an obvious improvement in hardness and simultaneously in electrical conductivity.展开更多
基金the Hunan Provincial Natural Science Foundation of China (No. 07JJ3117)Chinese Postdoctoral Scientific Foundation (No. 20070410303).
文摘The ab initio method has been performed to explore the elastic and optical properties of Al3Sc compound, based on a plane wave pseudopotential method. It can be seen that the calculated equilibrium lattice parameter and elastic constants are in reasonable agreement with the previous experimental data. The elastic constants satisfy the requirement for mechanical stability in the cubic structure of the Al3Sc compound. The optical property calculations show that a strong absorptive peak exists from O-15eV and a relative small absorptive peak exists around 30eV. The form is caused by the optical transitions between high s, p, and d bands, and the latter results from the optical transitions from high s, p, and d bands to the low 2p band.
基金financially supported by the National Key R&D Program of China(No.2017YFB0405901)。
文摘Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of the functional devices.In this study,the microstructure in as-c as ted Al-20%Sc(in atomic ratio)alloys is characterized and the feathery Al3Sc grains with twin relationships are reported for the first time.The crystallographic features of twined structures and growth directions are quantitatively analyzed by electron backscatter diffraction(EBSD)technique.
基金National Natural Science Foundation of China(Nos.52001140,52274363)Guangdong Basic Applied Basic Research Foundation,China(Nos.2022A1515010558,2022A1515011597,2022A1515240065)。
基金financial support of the project from the Beijing Natural Science Foundation (2184110)the National Natural Science Foundation of China (Nos. 51434005, 51704020 and 51874035)the Fundamental Research Funds for Central Universities of China (No. FRF-TP-17-035A1)
文摘This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.
基金the financial support of the project from the National Natural Science Foundation of China (No. 51771147)。
文摘A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coherent dispersoids and grow by sacrificing the latter.While the dispersoid size greater than^40 nm,Q' and U2 phases are additionally produced that nucleate on the dislocations induced by the semi-/incoherent dispersoids.Mechanical and electrical properties are highly sensitive to the Al3 Sc dispersoid-tuned precipitation.The co-precipitation of β",Q' and U2 phases leads to an obvious improvement in hardness and simultaneously in electrical conductivity.