Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
Self heating effects in silicon on insulator (SOI) devices limit the applicability of SOI materials in electronics in cases where high power dissipation is expected. AlN film as a potential candidate for buried insula...Self heating effects in silicon on insulator (SOI) devices limit the applicability of SOI materials in electronics in cases where high power dissipation is expected. AlN film as a potential candidate for buried insulator material in SOI structures is investigated. Ion beam enhanced deposition (IBED) is used to manufacture large area AlN films. SIMS measurements indicate the formation of AlN films. The characterization of the films reveals that the quality of the films strongly depends on the evaporation rate of Al. For the film with high quality deposited at 0.05 nm/s, it has higher component of N, excellent dielectric property and a smoother surface with roughness RMS value of 0.13 nm, and can be bonded directly at room temperature by the smart cut process. SOI structure with the AlN film as buried insulator has formed successfully for the first time, which is confirmed by XTEM micrograph.展开更多
A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable subs...A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable substrate holder positioned in the middle of four side targets was a key approach to guarantee the grain growth with no tilt.The detailed effects of substrate angle on the c-axis orientation of Al N films were investigated by varying the substrate angle from 0°to 90°.Moreover,theoretical analysis and Monte Carlo(MC)simulation reveal that the oblique or even vertical angle could improve the lateral kinetic energy of sputtered atoms deposited on the growing film.A variety of examining techniques including X-ray diffraction(XRD),(002)peak rocking curve,scanning electron microscopy(SEM)were conducted to evaluate the angle dependence on the crystallographic orientation.These test results indicate that larger substrate angle is beneficial to the(002)growth of Al N thin film,and a fully c-axis textured Al N thin film is obtained at 90°with small surface roughness(R_(a))of 3.32 nm.展开更多
The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The ...The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.展开更多
Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated fo...Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated for temperature sensor applications. AlN films grown on Ptcoated Si substrates exhibit a lower(002) preferred orientation than those grown on Si substrates. The center frequencies of Pt/AlN/Si and Pt/AlN/Pt/Si configurations at room temperature are 424.1 and 456.4 MHz, respectively.The SAW was limited by Pt bottom electrodes to propagate in AlN layer. The temperature coefficient of frequency(TCF) values of Pt/AlN/Si and Pt/AlN/Pt/Si configurations are-51.6 × 10^-6 and-69.2 × 10^-6℃^-1, respectively.Compared with that of Pt/AlN/Si configuration, the TCF value of Pt/AlN/Pt/Si configuration decreases by 34.1 %.AlN resonator with the Pt floating bottom electrodes provides a large, quasi-constant temperature sensitivity which is suitable for temperature sensor applications.展开更多
Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere.A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source.In order to study the influen...Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere.A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source.In order to study the influence of the process parameters on the deposited AlN film,the experiments were performed at various technique parameters of laser energy density from 70 to 260 J/cm^2,substrate temperature from room temperature to 800℃and nitrogen pressure from 0.1 to 50 Pa.X-ray diffraction,scanning electron microscopy and X-ray photoelectron spectroscopy were applied to characterize the structure and surface morphology of the deposited AlN films.It was found that the structure of AlN films deposited in a vacuum is rocksalt under the condition of substrate temperature600-800 ℃,nitrogen pressure 10-0.1 Pa and a moderate laser energy density(190 J/cm^2).The high quality AlN film exhibited good optical property.展开更多
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.
文摘Self heating effects in silicon on insulator (SOI) devices limit the applicability of SOI materials in electronics in cases where high power dissipation is expected. AlN film as a potential candidate for buried insulator material in SOI structures is investigated. Ion beam enhanced deposition (IBED) is used to manufacture large area AlN films. SIMS measurements indicate the formation of AlN films. The characterization of the films reveals that the quality of the films strongly depends on the evaporation rate of Al. For the film with high quality deposited at 0.05 nm/s, it has higher component of N, excellent dielectric property and a smoother surface with roughness RMS value of 0.13 nm, and can be bonded directly at room temperature by the smart cut process. SOI structure with the AlN film as buried insulator has formed successfully for the first time, which is confirmed by XTEM micrograph.
基金financially supported by the National Natural Science Foundation of China(Nos.U1832131 and51721005)Beijing Municipal Natural Science Foundation(No.3202034)the Natural Science Foundation of Hebei Province(No.E2018402097)。
文摘A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable substrate holder positioned in the middle of four side targets was a key approach to guarantee the grain growth with no tilt.The detailed effects of substrate angle on the c-axis orientation of Al N films were investigated by varying the substrate angle from 0°to 90°.Moreover,theoretical analysis and Monte Carlo(MC)simulation reveal that the oblique or even vertical angle could improve the lateral kinetic energy of sputtered atoms deposited on the growing film.A variety of examining techniques including X-ray diffraction(XRD),(002)peak rocking curve,scanning electron microscopy(SEM)were conducted to evaluate the angle dependence on the crystallographic orientation.These test results indicate that larger substrate angle is beneficial to the(002)growth of Al N thin film,and a fully c-axis textured Al N thin film is obtained at 90°with small surface roughness(R_(a))of 3.32 nm.
基金Project supported by the National Natural Science Foundation of China(Nos.11872329,12192211,and 12072315)the Natural Science Foundation of Zhejiang Province of China(No.LD21A020001)+1 种基金the National Postdoctoral Program for Innovation Talents of China(No.BX2021261)the China Postdoctoral Science Foundation Funded Project(No.2022M722745)。
文摘The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.
基金financially supported by the National Nature Science Foundation of China (No. 61223002)Sichuan Youth Science and Technology Innovation Research Team Funding (No. 2011JTD0006)
文摘Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated for temperature sensor applications. AlN films grown on Ptcoated Si substrates exhibit a lower(002) preferred orientation than those grown on Si substrates. The center frequencies of Pt/AlN/Si and Pt/AlN/Pt/Si configurations at room temperature are 424.1 and 456.4 MHz, respectively.The SAW was limited by Pt bottom electrodes to propagate in AlN layer. The temperature coefficient of frequency(TCF) values of Pt/AlN/Si and Pt/AlN/Pt/Si configurations are-51.6 × 10^-6 and-69.2 × 10^-6℃^-1, respectively.Compared with that of Pt/AlN/Si configuration, the TCF value of Pt/AlN/Pt/Si configuration decreases by 34.1 %.AlN resonator with the Pt floating bottom electrodes provides a large, quasi-constant temperature sensitivity which is suitable for temperature sensor applications.
基金supported by the Yunnan Provincial Natural of Science Foundation of China(No.KKSY201251089)
文摘Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere.A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source.In order to study the influence of the process parameters on the deposited AlN film,the experiments were performed at various technique parameters of laser energy density from 70 to 260 J/cm^2,substrate temperature from room temperature to 800℃and nitrogen pressure from 0.1 to 50 Pa.X-ray diffraction,scanning electron microscopy and X-ray photoelectron spectroscopy were applied to characterize the structure and surface morphology of the deposited AlN films.It was found that the structure of AlN films deposited in a vacuum is rocksalt under the condition of substrate temperature600-800 ℃,nitrogen pressure 10-0.1 Pa and a moderate laser energy density(190 J/cm^2).The high quality AlN film exhibited good optical property.