The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add...The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were...Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi...Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.展开更多
The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics...The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.展开更多
Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-l...Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.展开更多
Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperatu...Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.展开更多
The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was disc...The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金Project(2012MS0801)supported by the Natural Science Foundation of Inner Mongolia,China
文摘Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
文摘Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.
文摘The preferred internal oxidation of aluminum in Cu Al alloy was used to obtain in situ Al 2O 3/Cu composites. The reinforcement particles were mainly γ Al 2O 3, some θ Al 2O 3 and a little α Al 2O 3. Thermodynamics analyses show that the chemical reactions are 3Cu 2O+2Al=6Cu+Al 2O 3 or 3CuO+2Al=3Cu+Al 2O 3. A related equilibrium diagram was drawn. The experiments and investigation show that the formation rate of Al 2O 3 was controlled by the diffusion of oxygen in matrix.
文摘Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.
文摘Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.
文摘The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.