Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information a...Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information are challenge work that must be confronted. A new process alarm management method based on fuzzy clustering- ranking algorithm is proposed. The fuzzy clustering algorithm is used to cluster rationally the process variables, and difference driving decision algorithm ranks different clusters and process parameters in every cluster. The alarm signal of higher rank is handled preferentially to manage effectively alarms and avoid blind operation. The validity of proposed algorithm and solution is verified by the practical application of ethylene cracking furnace system. It is an effective and dependable alarm management method to improve operating safety in industrial process.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
基金Partially supported by the National Natural Science Foundation of China (No. 29976003), the Key Research Project ofScience and Technology from Ministry of Education in China (No. 01024), and Sinopec Science & Technology DevelopmentProject (No. E03007)
文摘Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information are challenge work that must be confronted. A new process alarm management method based on fuzzy clustering- ranking algorithm is proposed. The fuzzy clustering algorithm is used to cluster rationally the process variables, and difference driving decision algorithm ranks different clusters and process parameters in every cluster. The alarm signal of higher rank is handled preferentially to manage effectively alarms and avoid blind operation. The validity of proposed algorithm and solution is verified by the practical application of ethylene cracking furnace system. It is an effective and dependable alarm management method to improve operating safety in industrial process.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.