AIM: To investigate the mechanism by which Qinggan Huoxue Recipe (QGHXR) inhibits epithelial-to-mesenchymal transition (EMT) in rats with alcoholic liver fibrosis (ALF).METHODS: A total of 75 male SD rats were used to...AIM: To investigate the mechanism by which Qinggan Huoxue Recipe (QGHXR) inhibits epithelial-to-mesenchymal transition (EMT) in rats with alcoholic liver fibrosis (ALF).METHODS: A total of 75 male SD rats were used to induce ALF. Serum biochemical indicators, including alanine aminotransferase, aspartate aminotransferase, laminin and hyaluronidase, were measured. Liver histopathological changes were evaluated using hematoxylin-eosin and Sirius red staining. EMT was examined by analyzing the expression of the epithelial marker E-cadherin and the mesenchymal markers vimentin and fibronectin using RT-PCR and Western blot. The inhibitory effect of QGHXR on EMT markers, as well as its effect on molecules associated with the transforming growth factor (TGF)-β1/Smad signaling pathway, including TGF-β1, Smad3, snail, occludin, ZO-1 and claudin, was also examined.RESULTS: Compared with normal control rats, ALF rats exhibited a decrease in E-cadherin levels (mRNA: ALF 0.16 ± 0.05 vs control 1.00 ± 0.08; protein: ALF 0.09 ± 0.05 vs control 0.70 ± 0.17, P < 0.01) and an increase in vimentin and fibronectin levels (mRNA: 11.43 ± 0.39 vs 1.00 ± 0.19 and 9.91 ± 0.34 vs 1.00 ± 0.44, respectively, P < 0.01; protein: 1.13 ± 0.42 vs 0.09 ± 0.03 and 1.16 ± 0.43 vs 0.09 ± 0.00, respectively, P < 0.01). This indicates that EMT occurred in ALF rats. In addition, the TGF-β1/Smad signaling pathway was activated in ALF rats, as evidenced by the increase in TGF-β1 and snail levels (mRNA: 1.76 ± 0.12 vs 1.00 ± 0.05 and 6.98 ± 0.41 vs 1.00 ± 0.10, respectively, P < 0.01; protein: 1.43 ± 0.05 vs 0.12 ± 0.03 and 1.07 ± 0.29 vs 0.07 ± 0.02, respectively, P < 0.01) and the decrease in Smad3 levels (mRNA: 0.05 ± 0.01 vs 1.00 ± 0.12, P < 0.01; protein: 0.06 ± 0.05 vs 0.89 ± 0.12, P < 0.01). Furthermore, levels of the tight junction markers occludin, ZO-1 and claudin decreased in ALF rats compared with healthy control rats (mRNA: 0.60 ± 0.09 vs 1.00 ± 0.12, 0.11 ± 0.00 vs 1.00 ± 0.12 and 0.60 ± 0.01 vs 1.00 ± 0.08, respectively, P < 0.01; protein: 0.05 ± 0.01 vs 0.87 ± 0.40, 0.09 ± 0.05 vs 0.89 ± 0.18 and 0.04 ± 0.03 vs 0.95 ± 0.21, respectively, P < 0.01). In ALF rats treated with QGHXR, E-cadherin levels increased (mRNA: QGHXR 0.67 ± 0.04 vs ALF model 0.16 ± 0.05, P < 0.01; protein: QGHXR 0.66 ± 0.21 vs ALF model 0.09 ± 0.05, P < 0.01), and vimentin and fibronectin levels decreased (mRNA: 6.57 ± 1.05 vs 11.43 ± 0.39 and 1.45 ± 1.51 vs 9.91 ± 0.34, respectively, P < 0.01; protein: 0.09 ± 0.03 vs 1.13 ± 0.42 and 0.10 ± 0.01 vs 1.16 ± 0.43, respectively, P < 0.01). In addition, QGHXR inhibited the expression of TGF-β1 and increased the expression of Smad3 (mRNA: 1.03 ± 0.11 vs 1.76 ± 0.12, 0.70 ± 0.10 vs 0.05 ± 0.01, respectively, P < 0.05 and P < 0.01; protein: 0.12 ± 0.03 vs 1.43 ± 0.05 and 0.88 ± 0.20 vs 0.06 ± 0.05, respectively, P < 0.01). QGHXR treatment also reduced the levels of the EMT-inducing transcription factor snail (mRNA: 2.28 ± 0.33 vs 6.98 ± 0.41, P < 0.01; protein: 0.08 ± 0.02 vs 1.07 ± 0.29, P < 0.01) and increased the occludin, ZO-1 and claudin levels (mRNA: 0.73 ± 0.05 vs 0.60 ± 0.09, 0.57 ± 0.04 vs 0.11 ± 0.00 and 0.68 ± 0.03 vs 0.60 ± 0.01, respectively, P < 0.01, P < 0.01 and P < 0.05; protein: 0.92 ± 0.50 vs 0.05 ± 0.01, 0.94 ± 0.22 vs 0.09 ± 0.05 and 0.94 ± 0.29 vs 0.04 ± 0.03, respectively, P < 0.01). The effects of QGR and HXR on the TGF-β1/Smad signaling pathway were similar to that of QGHXR; however, the QGR- and HXR-induced changes in vimentin mRNA levels, the QGR-induced changes in fibronectin mRNA levels and the HXR-induced changes in snail and TGF-β1 mRNA levels were not significant.CONCLUSION: Qinggan Huoxue Recipe inhibits EMT in ALF rats by modulating the TGF-β1/Smad signaling pathway, suggesting that the mechanism underlying the amelioration of ALF induced by QGHXR is associated with this pathway.展开更多
AIM: To investigate the effect of Qinggan Huoxuefang (QGHXF) on improvement of liver function and pathology in rats, and to analyze the mechanism. METHODS: Wistar rats were divided into three groups at random: no...AIM: To investigate the effect of Qinggan Huoxuefang (QGHXF) on improvement of liver function and pathology in rats, and to analyze the mechanism. METHODS: Wistar rats were divided into three groups at random: normal control group (12), micro-amount carbon tetrachlodde group (CCh)(12) and model group A (60). The model group A was ingested with the mixture (500 mL/L alcohol, 8 mL/kg per day; corn oil, 2 mL/kg per day; pyrazole, 24 mg/kg per day) once a day and intraperitoneal injections of 0.25 mL/kg of a 250 mL/L solution of CCh in olive oil twice a week for 12 wk. The CCh group received intraperitoneal injections only. At the end of 8 wk the model group A (60) was divided into 5 subgroups: model group, Xiaochaihu Chongji (XCH) group, QGHXF high dose group, moderate dose group and low dose group, and were given the drugs respectively. At the end of 12 wk, all the rats were killed and blood samples collected, as well as liver tissue. Blood samples were used for evaluation of alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (y-GT). Liver specimens were obtained for routine HE, apoptosis gene array and flow cytometry analysis. RESULTS: A liver fibrosis animal model was successfully established. Fibrosis was obviously reduced in QGHXF high dose group, and no fibrosis formed in CCh group. Compared with model group the QGHXF group and XCH group could obviously decrease the level of ALT, AST, ALP, and GGT (P〈0.05). QGHXF high dose group was better than XCH group in ALT (615± 190 vs 867± 115),and AST(1972 ± 366 vs 2777 ± 608). Moreover, QGHXF could reduce liver inflammation, fibrosis-induced hepatic stellate cell (HSC) apoptosis and regulate apoptosis gene expression. The HSC apoptosis rates of QGHXF groups were 22.4±3.13, 13.79±2.26 and 10.07± 1.14, higher than model group, 6.58±1.04 (P〈 0.05). Compared to model group, 39 genes were up-regulated, 11 solely expressed and 17 down-regulated in high dose group. CONCLUSION: QGHXF can improve liver fibrosis and induce HSC apoptosis.展开更多
AIM To explore the effect of interleukin(IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells(HSCs), and whether this is related to regulation of Nrf2-keap1-ARE.METHODS HSC-T6 cells were incubat...AIM To explore the effect of interleukin(IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells(HSCs), and whether this is related to regulation of Nrf2-keap1-ARE.METHODS HSC-T6 cells were incubated with 25, 50, 100, 200 and 400 μmol/L acetaldehyde. After 24 and 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was used to detect proliferation of HSCs to choose the best concentration and action time. We used the optimal concentration of acetaldehyde(200 μmol/L) to stimulate HSCs for 24 h, and treated the cells with a final concentration of 10, 20 or 50 ng/m L IL-22. The cell proliferation rate was detected by MTT assay. The cell cycle was analyzed by flow cytometry. The expression of nuclear factor-related factor(Nrf)2 and α-smooth muscle antigen was detected by western blotting and immunocytochemistry. The levels of malondialdehyde(MDA) and glutathione(GSH) were measured by spectrophotometry. RESULTS In the MTT assay, when HSCs were incubated with acetaldehyde, activity and proliferation were higher than in the control group, and were most obvious after 48 h treatment with 200 μmol/L acetaldehyde. The number of cells in G0/G1 phases was decreased and the number in S phase was increased in comparison with the control group. When treated with different concentrations of IL-22, HSC-T6 cell activity and proliferation rate were markedly decreased in a dosedependent manner, and cell cycle progression was arrested from G1 to S phase. Western blotting and immunocytochemistry demonstrated that expression of Nrf2 total protein was not significantly affected. Expression of Nrf2 nuclear protein was low in thecontrol group, increased slightly in the model group(or acetaldehyde-stimulated group), and increased more obviously in the IL-22 intervention groups. The levels of MDA and GSH in the model group were significantly enhanced in comparison with those in the control group. In cells treated with IL-22, the MDA level was attenuated but the GSH level was further increased. These changes were dose-dependent. CONCLUSION IL-22 inhibits acetaldehyde-induced HSC activation and proliferation, which may be related to nuclear translocation of Nrf2 and increased activity of the antioxidant axis Nrf2-keap1-ARE.展开更多
Objective: To investigate the effects of Artemisia decoction on liver function and phosphorylation of extracellular regulated protein kinase/eukaryotic translation initiation factor 2α (pERK/eIF2a) signaling pathway ...Objective: To investigate the effects of Artemisia decoction on liver function and phosphorylation of extracellular regulated protein kinase/eukaryotic translation initiation factor 2α (pERK/eIF2a) signaling pathway in rats with alcoholic liver fibrosis. Methods: A total of 40 healthy Sprague-Dole (SD) rats were randomly divided into 4 groups: the normal group, the sham operation group, the model group and the Artemisia decoction group, with 10 rats in each group. Alcoholic liver fibrosis model was established by "alcohol-corn oil-pyrazole" combined with a 12-week high-fat diet. After successful modeling, the normal group was not treated, and the sham operation group was given saline. The model group and the Artemisia decoction group were given the same amount of wormwood soup at the same time. The serum hydroxyproline (HYP), hyaluronidase (HA), laminin (LN), type IV collagen (CIV), type III procollagen (PIIINP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-TG), total bile acid (TBA), total bilirubin (TB), albumin (ALB), total cholesterol (CHOL), triglyceride (TG), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured after 12 weeks of continuous treatment. The degree of liver fibrosis was observed by hematoxylin-eosin staining (HE). The expression of pERK/eIF2a signaling pathway in liver tissue was detected by enzyme-linked immunosorbent assay (ELISA). Results: Compared with the normal group, the levels of serum HYP, HA, LN, CIV, PIIINP, AST, ALT, γ-GT, ALP, TBL and TB in the sham operation group were not significantly changed (P>0.05), while these indexes in the model group were significantly elevated (P<0.01). After treatment with Artemisia decoction, the levels of serum HYP, HA, LN, CIV, PIIINP, AST, ALT, γ-GT, ALP, TBL and TB were significantly lower than those in the model group (P<0.01). The serum albumin, lipid metabolism and oxidative damage indicators showed that there was no significant change in serum ALB, CHOL, TG, GSH, SOD and MDA levels in the sham operation group compared with the normal group (P>0.01). The levels of GSH and SOD in the model group were significantly decreased (P<0.01), and the levels of CHOL, TG and MDA in the model group were significantly increased (P<0.01). Compared with the model group, the serum ALB, GSH and SOD levels were significantly increased (P<0.01), and CHOL, TG and MDA levels were significantly decreased after giving intervention with Artemisia decoction (P<0.01). The results of HE staining showed that compared with the control group, the morphology of the liver sections of the sham operation group was normal, while the liver sections of the model group showed obvious vacuolization changes. The liver sections of the rats treated with Artemisia decoction were significantly improved. The results of ELISA showed that there was no significant change in the levels of pERK and eIF2a in the liver tissue of the sham operation group compared with the normal group (P>0.05). The levels of pERK and eIF2a in the liver tissue of the model group were significantly increased (P<0.01). After treatment with Artemisia decoction, the levels of pERK and eIF2a in rat liver tissues were significantly lower than those in the model group (P<0.01). Conclusion: Artemisia decoction can effectively block the degree of liver fibrosis in rats with alcoholic liver fibrosis, reduce liver fibrosis index and improve hepatobiliary function. This effect may be related to inhibition of the pERK/eIF2a signaling pathway.展开更多
Alcoholic liver disease is one of the most common chronic liver diseases in the world.It is a liver disease caused by prolonged heavy drinking and its main clinical features are nausea,vomiting,enlargement of the live...Alcoholic liver disease is one of the most common chronic liver diseases in the world.It is a liver disease caused by prolonged heavy drinking and its main clinical features are nausea,vomiting,enlargement of the liver,and jaundice.Recent studies suggest that Kupffer cell-mediated inflam-matory response is a core driver in the development of alco-holic steatohepatitis and alcoholic liver fibrosis.As a danger signal,extracellular ATP activates the assembly of NLPR3 inflammasome by acting on purine P2X7 receptor,the ac-tivated NLRP3 inflammasome prompts ASC to cleave pro-cCaspase-1 into active caspase-1in KCs.Active caspase-1 promotes the conversion of pro-IL-1βto IL-1β,which fur-ther enhances the inflammatory response.Here,we briefly review the role of the P2X7R-NLRP3 inflammasome axis in the pathogenesis of alcoholic liver disease and the evolution of alcoholic steatohepatitis and alcoholic liver fibrosis.Reg-ulation of the inflammasome axis of P2X7R-NLRP3 may be a new approach for the treatment of alcoholic liver disease.展开更多
AIM: To study the role of hepatic sinusoidal capillarization and perisinusoidal fibrosis in rats with alcohol-induced portal hypertension and to discuss the pathological mechanisms of alcohol-induced hepatic portal h...AIM: To study the role of hepatic sinusoidal capillarization and perisinusoidal fibrosis in rats with alcohol-induced portal hypertension and to discuss the pathological mechanisms of alcohol-induced hepatic portal hypertension. METHODS: Fifty SD rats were divided into control group (n=20) and model group (n=30). Alcoholic liver fibrosis rat model was induced by intragastric infusion of a mixture containing alcohol, corn oil and pyrazole (1 000:250:3). Fifteen rats in each group were killed at wk 16. The diameter and pressure of portal vein were measured. Plasma hyaluronic acid (HA), type IV collagen (COW) and laminin (LN) were determined by radioimmunoassay. Liver tissue was fixed in formalin (10%) and 6-μm thick sections were routinely stained with Mallory and Sirius Red. Liver tissue was treated with rabbit polydonal antibody against LN and ColⅣ. Hepatic non-parenchymal cells were isolated, total protein was extracted and separated by SDS-PAGE. MMP-2 and TIMP-1 protein expression was estimated by Western blotting. RESULTS: The diameter (2.207 ± 0.096 vs 1.528±0.054 mm, P〈0.01) and pressure (11.014±0.395 vs 8.533±0.274 mmHg, P〈0.01) of portal vein were significantly higher in model group than those in the control group. Plasma HA (129.97±16.10 vs 73.09±2.38 ng/mL, P〈0.01), ColⅣ (210.49±4.36 vs 89.65±4.42 ng/mL, P〈0.01) and LN (105.00±7.29 vs 55.70±4.32 ng/mL, P〈0.01) were upregulated in model group. Abundant collagen deposited around the central vein of Iobules, hepatic sinusoids and hepatocytes in model group. ColⅠ and ColⅢ increased remarkably and perisinusoids were almost surrounded by ColⅢ. Immunohistochemical staining showed that ColⅣ protein level (0.130±0.007 vs 0.032±0.004, P〈0.01) and LN protein level (0.152±0.005 vs 0.029±0.005, P〈0.01) were up-regulated remarkably in model group. MMP-2 protein expression (2.306±1.089 vs 0.612±0.081, P〈0.01) and TIMP-1 protein expression (3.015±1.364 vs 0.446±0.009, P〈0.01) in freshly isolated hepatic nonparenchymal cells were up-regulated in model group and TIMP-1 protein expression was evidently higher than MMP-2 protein expression (2.669±0.170 vs 1.695±0.008, P〈0.05). CONCLUSION: Hepatic sinusoidal capillarization and peri-sinusoidal fibrosis are responsible for alcoholinduced portal hypertension in rats,展开更多
基金Supported by National Natural Science Foundation of China,No.81202979Shanghai Rising-Star Program,No.15QA1403500
文摘AIM: To investigate the mechanism by which Qinggan Huoxue Recipe (QGHXR) inhibits epithelial-to-mesenchymal transition (EMT) in rats with alcoholic liver fibrosis (ALF).METHODS: A total of 75 male SD rats were used to induce ALF. Serum biochemical indicators, including alanine aminotransferase, aspartate aminotransferase, laminin and hyaluronidase, were measured. Liver histopathological changes were evaluated using hematoxylin-eosin and Sirius red staining. EMT was examined by analyzing the expression of the epithelial marker E-cadherin and the mesenchymal markers vimentin and fibronectin using RT-PCR and Western blot. The inhibitory effect of QGHXR on EMT markers, as well as its effect on molecules associated with the transforming growth factor (TGF)-β1/Smad signaling pathway, including TGF-β1, Smad3, snail, occludin, ZO-1 and claudin, was also examined.RESULTS: Compared with normal control rats, ALF rats exhibited a decrease in E-cadherin levels (mRNA: ALF 0.16 ± 0.05 vs control 1.00 ± 0.08; protein: ALF 0.09 ± 0.05 vs control 0.70 ± 0.17, P < 0.01) and an increase in vimentin and fibronectin levels (mRNA: 11.43 ± 0.39 vs 1.00 ± 0.19 and 9.91 ± 0.34 vs 1.00 ± 0.44, respectively, P < 0.01; protein: 1.13 ± 0.42 vs 0.09 ± 0.03 and 1.16 ± 0.43 vs 0.09 ± 0.00, respectively, P < 0.01). This indicates that EMT occurred in ALF rats. In addition, the TGF-β1/Smad signaling pathway was activated in ALF rats, as evidenced by the increase in TGF-β1 and snail levels (mRNA: 1.76 ± 0.12 vs 1.00 ± 0.05 and 6.98 ± 0.41 vs 1.00 ± 0.10, respectively, P < 0.01; protein: 1.43 ± 0.05 vs 0.12 ± 0.03 and 1.07 ± 0.29 vs 0.07 ± 0.02, respectively, P < 0.01) and the decrease in Smad3 levels (mRNA: 0.05 ± 0.01 vs 1.00 ± 0.12, P < 0.01; protein: 0.06 ± 0.05 vs 0.89 ± 0.12, P < 0.01). Furthermore, levels of the tight junction markers occludin, ZO-1 and claudin decreased in ALF rats compared with healthy control rats (mRNA: 0.60 ± 0.09 vs 1.00 ± 0.12, 0.11 ± 0.00 vs 1.00 ± 0.12 and 0.60 ± 0.01 vs 1.00 ± 0.08, respectively, P < 0.01; protein: 0.05 ± 0.01 vs 0.87 ± 0.40, 0.09 ± 0.05 vs 0.89 ± 0.18 and 0.04 ± 0.03 vs 0.95 ± 0.21, respectively, P < 0.01). In ALF rats treated with QGHXR, E-cadherin levels increased (mRNA: QGHXR 0.67 ± 0.04 vs ALF model 0.16 ± 0.05, P < 0.01; protein: QGHXR 0.66 ± 0.21 vs ALF model 0.09 ± 0.05, P < 0.01), and vimentin and fibronectin levels decreased (mRNA: 6.57 ± 1.05 vs 11.43 ± 0.39 and 1.45 ± 1.51 vs 9.91 ± 0.34, respectively, P < 0.01; protein: 0.09 ± 0.03 vs 1.13 ± 0.42 and 0.10 ± 0.01 vs 1.16 ± 0.43, respectively, P < 0.01). In addition, QGHXR inhibited the expression of TGF-β1 and increased the expression of Smad3 (mRNA: 1.03 ± 0.11 vs 1.76 ± 0.12, 0.70 ± 0.10 vs 0.05 ± 0.01, respectively, P < 0.05 and P < 0.01; protein: 0.12 ± 0.03 vs 1.43 ± 0.05 and 0.88 ± 0.20 vs 0.06 ± 0.05, respectively, P < 0.01). QGHXR treatment also reduced the levels of the EMT-inducing transcription factor snail (mRNA: 2.28 ± 0.33 vs 6.98 ± 0.41, P < 0.01; protein: 0.08 ± 0.02 vs 1.07 ± 0.29, P < 0.01) and increased the occludin, ZO-1 and claudin levels (mRNA: 0.73 ± 0.05 vs 0.60 ± 0.09, 0.57 ± 0.04 vs 0.11 ± 0.00 and 0.68 ± 0.03 vs 0.60 ± 0.01, respectively, P < 0.01, P < 0.01 and P < 0.05; protein: 0.92 ± 0.50 vs 0.05 ± 0.01, 0.94 ± 0.22 vs 0.09 ± 0.05 and 0.94 ± 0.29 vs 0.04 ± 0.03, respectively, P < 0.01). The effects of QGR and HXR on the TGF-β1/Smad signaling pathway were similar to that of QGHXR; however, the QGR- and HXR-induced changes in vimentin mRNA levels, the QGR-induced changes in fibronectin mRNA levels and the HXR-induced changes in snail and TGF-β1 mRNA levels were not significant.CONCLUSION: Qinggan Huoxue Recipe inhibits EMT in ALF rats by modulating the TGF-β1/Smad signaling pathway, suggesting that the mechanism underlying the amelioration of ALF induced by QGHXR is associated with this pathway.
基金Supported by Shanghai Rising-Star program, No. 03QMH1410
文摘AIM: To investigate the effect of Qinggan Huoxuefang (QGHXF) on improvement of liver function and pathology in rats, and to analyze the mechanism. METHODS: Wistar rats were divided into three groups at random: normal control group (12), micro-amount carbon tetrachlodde group (CCh)(12) and model group A (60). The model group A was ingested with the mixture (500 mL/L alcohol, 8 mL/kg per day; corn oil, 2 mL/kg per day; pyrazole, 24 mg/kg per day) once a day and intraperitoneal injections of 0.25 mL/kg of a 250 mL/L solution of CCh in olive oil twice a week for 12 wk. The CCh group received intraperitoneal injections only. At the end of 8 wk the model group A (60) was divided into 5 subgroups: model group, Xiaochaihu Chongji (XCH) group, QGHXF high dose group, moderate dose group and low dose group, and were given the drugs respectively. At the end of 12 wk, all the rats were killed and blood samples collected, as well as liver tissue. Blood samples were used for evaluation of alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (y-GT). Liver specimens were obtained for routine HE, apoptosis gene array and flow cytometry analysis. RESULTS: A liver fibrosis animal model was successfully established. Fibrosis was obviously reduced in QGHXF high dose group, and no fibrosis formed in CCh group. Compared with model group the QGHXF group and XCH group could obviously decrease the level of ALT, AST, ALP, and GGT (P〈0.05). QGHXF high dose group was better than XCH group in ALT (615± 190 vs 867± 115),and AST(1972 ± 366 vs 2777 ± 608). Moreover, QGHXF could reduce liver inflammation, fibrosis-induced hepatic stellate cell (HSC) apoptosis and regulate apoptosis gene expression. The HSC apoptosis rates of QGHXF groups were 22.4±3.13, 13.79±2.26 and 10.07± 1.14, higher than model group, 6.58±1.04 (P〈 0.05). Compared to model group, 39 genes were up-regulated, 11 solely expressed and 17 down-regulated in high dose group. CONCLUSION: QGHXF can improve liver fibrosis and induce HSC apoptosis.
文摘AIM To explore the effect of interleukin(IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells(HSCs), and whether this is related to regulation of Nrf2-keap1-ARE.METHODS HSC-T6 cells were incubated with 25, 50, 100, 200 and 400 μmol/L acetaldehyde. After 24 and 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was used to detect proliferation of HSCs to choose the best concentration and action time. We used the optimal concentration of acetaldehyde(200 μmol/L) to stimulate HSCs for 24 h, and treated the cells with a final concentration of 10, 20 or 50 ng/m L IL-22. The cell proliferation rate was detected by MTT assay. The cell cycle was analyzed by flow cytometry. The expression of nuclear factor-related factor(Nrf)2 and α-smooth muscle antigen was detected by western blotting and immunocytochemistry. The levels of malondialdehyde(MDA) and glutathione(GSH) were measured by spectrophotometry. RESULTS In the MTT assay, when HSCs were incubated with acetaldehyde, activity and proliferation were higher than in the control group, and were most obvious after 48 h treatment with 200 μmol/L acetaldehyde. The number of cells in G0/G1 phases was decreased and the number in S phase was increased in comparison with the control group. When treated with different concentrations of IL-22, HSC-T6 cell activity and proliferation rate were markedly decreased in a dosedependent manner, and cell cycle progression was arrested from G1 to S phase. Western blotting and immunocytochemistry demonstrated that expression of Nrf2 total protein was not significantly affected. Expression of Nrf2 nuclear protein was low in thecontrol group, increased slightly in the model group(or acetaldehyde-stimulated group), and increased more obviously in the IL-22 intervention groups. The levels of MDA and GSH in the model group were significantly enhanced in comparison with those in the control group. In cells treated with IL-22, the MDA level was attenuated but the GSH level was further increased. These changes were dose-dependent. CONCLUSION IL-22 inhibits acetaldehyde-induced HSC activation and proliferation, which may be related to nuclear translocation of Nrf2 and increased activity of the antioxidant axis Nrf2-keap1-ARE.
基金This study was supported by Baoding Science and Technology Plan Project (Grant 17ZF323)
文摘Objective: To investigate the effects of Artemisia decoction on liver function and phosphorylation of extracellular regulated protein kinase/eukaryotic translation initiation factor 2α (pERK/eIF2a) signaling pathway in rats with alcoholic liver fibrosis. Methods: A total of 40 healthy Sprague-Dole (SD) rats were randomly divided into 4 groups: the normal group, the sham operation group, the model group and the Artemisia decoction group, with 10 rats in each group. Alcoholic liver fibrosis model was established by "alcohol-corn oil-pyrazole" combined with a 12-week high-fat diet. After successful modeling, the normal group was not treated, and the sham operation group was given saline. The model group and the Artemisia decoction group were given the same amount of wormwood soup at the same time. The serum hydroxyproline (HYP), hyaluronidase (HA), laminin (LN), type IV collagen (CIV), type III procollagen (PIIINP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-TG), total bile acid (TBA), total bilirubin (TB), albumin (ALB), total cholesterol (CHOL), triglyceride (TG), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured after 12 weeks of continuous treatment. The degree of liver fibrosis was observed by hematoxylin-eosin staining (HE). The expression of pERK/eIF2a signaling pathway in liver tissue was detected by enzyme-linked immunosorbent assay (ELISA). Results: Compared with the normal group, the levels of serum HYP, HA, LN, CIV, PIIINP, AST, ALT, γ-GT, ALP, TBL and TB in the sham operation group were not significantly changed (P>0.05), while these indexes in the model group were significantly elevated (P<0.01). After treatment with Artemisia decoction, the levels of serum HYP, HA, LN, CIV, PIIINP, AST, ALT, γ-GT, ALP, TBL and TB were significantly lower than those in the model group (P<0.01). The serum albumin, lipid metabolism and oxidative damage indicators showed that there was no significant change in serum ALB, CHOL, TG, GSH, SOD and MDA levels in the sham operation group compared with the normal group (P>0.01). The levels of GSH and SOD in the model group were significantly decreased (P<0.01), and the levels of CHOL, TG and MDA in the model group were significantly increased (P<0.01). Compared with the model group, the serum ALB, GSH and SOD levels were significantly increased (P<0.01), and CHOL, TG and MDA levels were significantly decreased after giving intervention with Artemisia decoction (P<0.01). The results of HE staining showed that compared with the control group, the morphology of the liver sections of the sham operation group was normal, while the liver sections of the model group showed obvious vacuolization changes. The liver sections of the rats treated with Artemisia decoction were significantly improved. The results of ELISA showed that there was no significant change in the levels of pERK and eIF2a in the liver tissue of the sham operation group compared with the normal group (P>0.05). The levels of pERK and eIF2a in the liver tissue of the model group were significantly increased (P<0.01). After treatment with Artemisia decoction, the levels of pERK and eIF2a in rat liver tissues were significantly lower than those in the model group (P<0.01). Conclusion: Artemisia decoction can effectively block the degree of liver fibrosis in rats with alcoholic liver fibrosis, reduce liver fibrosis index and improve hepatobiliary function. This effect may be related to inhibition of the pERK/eIF2a signaling pathway.
基金the National Natural Science Foundation of China(Grant No.81270498)the National Natural Science Foundation of China(Grant No.81970518).
文摘Alcoholic liver disease is one of the most common chronic liver diseases in the world.It is a liver disease caused by prolonged heavy drinking and its main clinical features are nausea,vomiting,enlargement of the liver,and jaundice.Recent studies suggest that Kupffer cell-mediated inflam-matory response is a core driver in the development of alco-holic steatohepatitis and alcoholic liver fibrosis.As a danger signal,extracellular ATP activates the assembly of NLPR3 inflammasome by acting on purine P2X7 receptor,the ac-tivated NLRP3 inflammasome prompts ASC to cleave pro-cCaspase-1 into active caspase-1in KCs.Active caspase-1 promotes the conversion of pro-IL-1βto IL-1β,which fur-ther enhances the inflammatory response.Here,we briefly review the role of the P2X7R-NLRP3 inflammasome axis in the pathogenesis of alcoholic liver disease and the evolution of alcoholic steatohepatitis and alcoholic liver fibrosis.Reg-ulation of the inflammasome axis of P2X7R-NLRP3 may be a new approach for the treatment of alcoholic liver disease.
基金Supported by National Natural Science Foundation of China, No.30130220Program for Changjiang Scholars and Innovative Research Team in University (2004)
文摘AIM: To study the role of hepatic sinusoidal capillarization and perisinusoidal fibrosis in rats with alcohol-induced portal hypertension and to discuss the pathological mechanisms of alcohol-induced hepatic portal hypertension. METHODS: Fifty SD rats were divided into control group (n=20) and model group (n=30). Alcoholic liver fibrosis rat model was induced by intragastric infusion of a mixture containing alcohol, corn oil and pyrazole (1 000:250:3). Fifteen rats in each group were killed at wk 16. The diameter and pressure of portal vein were measured. Plasma hyaluronic acid (HA), type IV collagen (COW) and laminin (LN) were determined by radioimmunoassay. Liver tissue was fixed in formalin (10%) and 6-μm thick sections were routinely stained with Mallory and Sirius Red. Liver tissue was treated with rabbit polydonal antibody against LN and ColⅣ. Hepatic non-parenchymal cells were isolated, total protein was extracted and separated by SDS-PAGE. MMP-2 and TIMP-1 protein expression was estimated by Western blotting. RESULTS: The diameter (2.207 ± 0.096 vs 1.528±0.054 mm, P〈0.01) and pressure (11.014±0.395 vs 8.533±0.274 mmHg, P〈0.01) of portal vein were significantly higher in model group than those in the control group. Plasma HA (129.97±16.10 vs 73.09±2.38 ng/mL, P〈0.01), ColⅣ (210.49±4.36 vs 89.65±4.42 ng/mL, P〈0.01) and LN (105.00±7.29 vs 55.70±4.32 ng/mL, P〈0.01) were upregulated in model group. Abundant collagen deposited around the central vein of Iobules, hepatic sinusoids and hepatocytes in model group. ColⅠ and ColⅢ increased remarkably and perisinusoids were almost surrounded by ColⅢ. Immunohistochemical staining showed that ColⅣ protein level (0.130±0.007 vs 0.032±0.004, P〈0.01) and LN protein level (0.152±0.005 vs 0.029±0.005, P〈0.01) were up-regulated remarkably in model group. MMP-2 protein expression (2.306±1.089 vs 0.612±0.081, P〈0.01) and TIMP-1 protein expression (3.015±1.364 vs 0.446±0.009, P〈0.01) in freshly isolated hepatic nonparenchymal cells were up-regulated in model group and TIMP-1 protein expression was evidently higher than MMP-2 protein expression (2.669±0.170 vs 1.695±0.008, P〈0.05). CONCLUSION: Hepatic sinusoidal capillarization and peri-sinusoidal fibrosis are responsible for alcoholinduced portal hypertension in rats,