期刊文献+
共找到2,106篇文章
< 1 2 106 >
每页显示 20 50 100
Iron homeostasis and H63D mutations in alcoholics with and without liver disease 被引量:3
1
作者 Mariana Verdelho Machado Paula Ravasco +3 位作者 Alexandra Martins Maria Rosário Almeida Maria Ermelinda Camilo Helena Cortez-Pinto 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第1期106-111,共6页
MM: To evaluate the prevalence of HFE gene mutation and indices of disturbed iron homeostasis in alcoholics with and without liver disease. METHODS: One hundred and fifty-three heavy drinkers (defined as alcohol co... MM: To evaluate the prevalence of HFE gene mutation and indices of disturbed iron homeostasis in alcoholics with and without liver disease. METHODS: One hundred and fifty-three heavy drinkers (defined as alcohol consumption 〉 80 g/d for at least 5 years) were included in the study. These comprised 78 patients with liver disease [liver disease alcoholics (LDA)] in whom the presence of liver disease was confirmed by liver biopsy or clinical evidence of hepatic decompensation, and 75 subjects with no evidence of liver disease, determined by normal liver tests on two occasions [non-liver disease alcoholics (NLDA)], were consecutively enrolled. Serum markers of iron status and HFE C282Y and H63D mutations were determined. HFE genotyping was compared with data obtained in healthy blood donors from the same geographical area. RESULTS: Gender ratio was similar in both study groups. LDA patients were older than NLDA patients (52 ± 10 years vs 48 ± 11 years, P = 0.03). One third and one fifth of the study population had serum transferrin saturation (TS) greater than 45% and 60% respectively. Serum iron levels were similar in both groups. However, LDA patients had higher TS (51 ± 27 vs 36 ± 13, P 〈 0.001) and ferritin levels (559 ± 607 ng/mL vs 159 ± 122 ng/mL, P 〈 0.001), and lower total iron binding capacity (TIBC) (241 ± 88 μg/dL vs 279 ± 40 μg/dL, P = 0.001). The odds ratio for having liver disease with TS greater than 45% was 2.20 (95% confidence interval (CI): 1.37-3.54). There was no difference in C282Y allelic frequency between the two groups. However, H63D was more frequent in LDA patients (0.25 vs 0.16, P = 0.03). LDA patients had a greater probability of carrying at least one HFE mutation than NLDA patients (49.5% vs 31.6%, P = 0.02). The odds ratio for LDA in patients with H63D mutation was 1.57 (95% CI: 1.02-2.40). CONCLUSION: The present study confirms the presence of iron overload in alcoholics, which was more severe in the subset of subjects with liver disease, in parallel with an increased frequency of H63D HFE mutation. 展开更多
关键词 Alcoholic liver disease Iron lIFE gene H63D HEMOCHROMATOSIS
下载PDF
DNA methylation patterns in alcoholics and family controls 被引量:1
2
作者 Manish Thapar Jonathan Covault +1 位作者 Victor Hesselbrock Herbert L Bonkovsky 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2012年第6期138-144,共7页
AIM: To assess whether DNA methylation patterns in chronic alcoholics are different from non-alcoholic sibling controls. METHODS: We examined the methylation patterns in DNA samples from 25 chronic alcoholics and 22 m... AIM: To assess whether DNA methylation patterns in chronic alcoholics are different from non-alcoholic sibling controls. METHODS: We examined the methylation patterns in DNA samples from 25 chronic alcoholics and 22 matched siblings as controls (one per family). DNA was extracted from peripheral blood and analyzed for differences in the methylation patterns after bisulfite-conversion. We used the Illumina GoldenGate Methylation Cancer Panel I (Illumina, San Diego, CA), which probes the methylation profile at 1505 CpG sites from 807 cancer related genes. We excluded the 84 X-chromosome CpG sites and 134 autosomal CpG sites that failed to show a within sample reliability score of at least 95% for all samples, leaving 1287 autosomal CpG sites (associated with 743 autosomal genes) with reliable signals for all samples. A methylation score was calculated as the average methylation for the 1287 CpG sites examined. Differences were assessed by a two-sample t-test. We also examined the average sib pair differences in methylation scores at each of the 1287 sites. All analyses were performed using SPSS, version 9.0, P < 0.05 was considered significant. RESULTS: Methylation levels at the 1287 CpG sites averaged 28.2% for both alcoholics and controls. The mean difference in methylation scores between alcoholic and non-alcoholic sibs by CpG site was < 1% with small inter-individual variances; and only 5 CpG sites had an average sib difference > 5%. Subgroup analysis showed that methylation scores were significantly lower for the alcoholic-dependent subjects who smoked compared to their non-smoking unaffected siblings. Specifically, among smokers who are alcoholic, global methylation indices were significantly lower than in non-alcoholic sib controls, whereas among non-smoking alcoholics, the global indices were significantly higher (P = 0.008). CONCLUSION: Although we observed no effect of alcoholism alone on DNA methylation, there is a decrease in alcoholics who smoke, suggesting a mechanism for alcohol-tobacco synergy for carcinogenesis. 展开更多
关键词 DNA methylation Alcohol EPIGENETICS Cancer CARCINOGENESIS SMOKING Cigarettes TOBACCO
下载PDF
Protective mechanism of Coprinus comatus polysaccharide on acute alcoholic liver injury in mice,the metabolomics and gut microbiota investigation 被引量:3
3
作者 Jinyan Yu Jianguang Sun +4 位作者 Min Sun Weidong Li Dongmei Qi Yongqing Zhang Chunchao Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期401-413,共13页
Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath... Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways. 展开更多
关键词 Coprinus comatus POLYSACCHARIDE Alcoholic liver disease Metabolomics Gut microbiota
下载PDF
A Polyvinyl Alcohol/Acrylamide Hydrogel with Enhanced Mechanical Properties Promotes Full-Thickness Skin Defect Healing by Regulating Immunomodulation and Angiogenesis Through Paracrine Secretion 被引量:1
4
作者 Peng Wang Liping Qian +9 位作者 Huixin Liang Jianhao Huang Jing Jin Chunmei Xie Bin Xue Jiancheng Lai Yibo Zhang Lifeng Jiang Lan Li Qing Jiang 《Engineering》 SCIE EI CAS CSCD 2024年第6期138-151,共14页
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na... Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration. 展开更多
关键词 Polyvinyl alcohol/acrylamide hydrogel Mechanical property enhancement Paracrine effect Skin regeneration Signaling pathways
下载PDF
Effect of Polyvinyl Alcohol in Inner Aqueous Phase on Stability of Millimeter-scale Capsules
5
作者 黄乐平 LI Shidong +2 位作者 ZHANG Jiabei PAN Chenchen 赵瑾朝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期506-511,共6页
The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and... The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules. 展开更多
关键词 CAPSULE MILLIMETER-SCALE millifluidics polyvinyl alcohol VISCOSITY
下载PDF
Application of solid-phase extraction and gas chromatography-mass spectrometry (SPE-GC-MS) in resolution of metabolism pattern of higher alcohols in rat plasma
6
作者 Yufei Liu Xiaonian Cao +7 位作者 Zhilei Zhou Qingxi Ren Zhongwei Ji Min Gong Yuezheng Xu Weibiao Zhou Shuguang Chen Jian Mao 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3501-3510,共10页
Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages.A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS)was established... Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages.A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS)was established to analyze the metabolism pattern of higher alcohols in rat plasma after gavage of 4 common alcoholic beverages including huangjiu,baijiu,wine and brandy.7 mL of dichloromethane was determined as the optimal extraction condition,and 8 higher alcohols were precisely quantified with detection limits of 1.82−11.65μg/L,recoveries of 89.07%−110.89%and fine repeatability.The fastest absorption and elimination rates of plasma total higher alcohols were observed in baijiu and huangjiu group,respectively,and the highest peak concentration was found in brandy group.Additionally,the metabolic rate of plasma isoamyl alcohol in huangjiu group was faster than that in wine group at the same intragastric administration dosage.This study may provide potential insight for evaluation of alcoholic beverage quality. 展开更多
关键词 Higher alcohols Alcoholic beverages SPE-GC-MS Pharmacokinetic parameters
下载PDF
Effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in healthy mice
7
作者 Wenxian Dang Rong Li +4 位作者 Jinyue Yang Changhu Xue Qingrong Huang Yuming Wang Tiantian Zhang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期137-145,共9页
Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.H... Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor. 展开更多
关键词 Holothurin A Echinoside A ALCOHOL ABSORPTION METABOLISM
下载PDF
Alcohol solvent effect on the self-assembly behaviors of lignin oligomers
8
作者 Ya Ma Zhicheng Jiang +4 位作者 Yafei Luo Xingjie Guo Xudong Liu Yiping Luo Bi Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期597-603,共7页
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th... The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly. 展开更多
关键词 Lignin oligomers Alcohol solvent SELF-ASSEMBLY LNPs Solvent effects
下载PDF
Uncovering the impact of alcohol on internal organs and reproductive health:Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways
9
作者 Eason Qi Zheng Kong Vetriselvan Subramaniyan Natasha Sura Anak Lubau 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第4期444-459,共16页
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa ligh... This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption. 展开更多
关键词 ALCOHOL health impact inflammation metabolism molecular pathways
下载PDF
Benzydamine hydrochloride ameliorates ethanol-induced inflammation in RAW 264.7 macrophages by stabilizing redox homeostasis
10
作者 Tiasha Dasgupta Venkatraman Manickam 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期73-81,I0006-I0009,共13页
Objective:To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.Methods:RAW 264.7 macrophages were treated with ethanol(100 m... Objective:To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.Methods:RAW 264.7 macrophages were treated with ethanol(100 mM)and benzydamine hydrochloride(7.5μM).The imflammatory status was confirmed by measuring pro-(TNF-αand IL-6)and anti-inflammatory(IL-10)cytokines through ELISA and RT-PCR assays.Reactive oxygen species generation and mitochondrial membrane potential were investigated to study the protective role of benzydamine hydrochloride against ethanol-induced oxidative stress.Apoptosis detection was also investigated using flow cytometry and acridine orange/ethidium bromide staining.Results:Benzydamine hydrochloride significantly decreased the secretion of TNF-αand IL-6,as well as the generation of reactive oxygen species inside the cells,thereby stabilizing the mitochondrial membrane potential and reducing DNA fragmentation.The ethanol-induced cellular necrosis was also reversed by the administration of benzydamine hydrochloride.Conclusions:Benzydamine hydrochloride ameliorates ethanol-induced cell apoptosis and inflammation in RAW macrophages. 展开更多
关键词 ALCOHOL Benzydamine hydrochloride INFLAMMATION Oxidative stress Apoptosis
下载PDF
Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols
11
作者 Ben Liu Yoshinao Nakagawa +1 位作者 Mizuho Yabushita Keiichi Tomishige 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期89-102,共14页
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n... Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission. 展开更多
关键词 Biomass-based polyols Secondary alcohol HYDRODEOXYGENATION Trimetallic alloy Boron nitride
下载PDF
A new fluorocarbon adhesive:Inhibiting agglomeration during combustion of propellant via efficient F-Al_(2)O_(3) preignition reaction
12
作者 Qifa Yao Min Xia +3 位作者 Chao Wang Fanzhi Yang Wei Yang Yunjun Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期292-305,共14页
Inhibiting the agglomeration of molten aluminum particles packed in the binder network is a promising scheme to achieve efficient combustion of solid propellants.In this investigation,the hydroxyl-terminated structure... Inhibiting the agglomeration of molten aluminum particles packed in the binder network is a promising scheme to achieve efficient combustion of solid propellants.In this investigation,the hydroxyl-terminated structured fluorinated alcohol compound(PFD)was introduced to modify the traditional polyethylene glycol/polytetrahydrofuran block copolymerization(HTPE)binder;that is,a unique fluorinated polyether(FTPE)binder was synthesized by embedding fluorinated organic segments into the HTPE binder via crosslinking curing.The FTPE was applied in aluminum-based propellants for the first time.Due to the complete release of fluorinated organic active segments in the range of 300℃to 400℃,the burning rate of FTPEbased propellant increased from 4.07(0%PFD)to 6.36 mm/s(5%PFD),increased by 56.27%under 1 MPa.The reaction heat of FTPE propellants increased from 5.95(0%PFD)to 7.18 MJ/kg(5%PFD)under 3.0 MPa,indicating that HTPE binder modified with PFD would be conducive to inhibiting the D90 of condensed combustion products(CCPs)dropped by 81.84%from 75.46(0%PFD)to 13.71μm(5%PFD)under 3.0 MPa,in consistent with the significant reduction of aluminum agglomerates observed on the quenched burning surface of the propellants.Those results demonstrated that a novel FTPE binder with PFD can release fluorinated organic active segments,which motivate preignition reaction with the alumina shell in the early stage of aluminum combustion,and then enhance the melting diffusion effect of aluminum to inhibit the agglomeration. 展开更多
关键词 agglomeration characteristics aluminum particles COMBUSTION fluorine alcohol compounds HTPE propellants
下载PDF
Innovative approach to boosting the chemical stability of AZ31 magnesium alloy using polymer-modified hybrid metal oxides
13
作者 Mosab Kaseem Ananda Repycha Safira +3 位作者 Mohammad Aadil Tehseen Zehra Muhammad Ali Khan Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1068-1081,共14页
Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite l... Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields. 展开更多
关键词 Plasma electrolysis Poly(vinyl alcohol) Tungsten trioxide SEALING CORROSION DFT.
下载PDF
Association of moderate beer consumption with the gut microbiota
14
作者 Zhaoxi Liu Jinming Shi +3 位作者 Lushan Wang Jianjun Dong Junhong Yu Min Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3126-3138,共13页
Beer is a fermented beverage prepared from water,malted barley,hops,and yeast that has been around for centuries.Alcoholic beverages alter the composition of the gut microbiota,which in turn causes oxidative stress br... Beer is a fermented beverage prepared from water,malted barley,hops,and yeast that has been around for centuries.Alcoholic beverages alter the composition of the gut microbiota,which in turn causes oxidative stress brought on by alcohol,increases intestinal permeability to luminal bacterial products.However,beer has been shown to contain several intriguing non-alcoholic chemicals.Recent research demonstrates that moderate beer drinking could have positive impacts on human health.Beer’s non-alcoholic ingredients have a significant impact on gut microbiota,and this type of diet is known to modulate gut microbiota,which has a variety of effects on the body,including effects on intestinal permeability,mucosal immune function,intestinal motility,antioxidant activity,and anti-inflammatory activity.Although the negative consequences of excessive alcohol intake are widely known,it is still debatable whether or not some non-alcoholic components,such as polyphenols and carbohydrates,have any positive benefits.In this review,we explain the primary benefits of moderate beer consumption on the gut microbiota,which are mostly attributable to non-alcoholic components such polyphenols.Despite any potential advantages of moderating consumption of alcoholic beverages,the lowest alcohol intake is the most secure. 展开更多
关键词 ALCOHOL Beer components Gut microbiota POLYPHENOLS Non-alcoholic beer
下载PDF
Alcohol drinking triggered decrease of oxidative balance score is associated with high all-cause and cardiovascular mortality in hypertensive individuals:findings from NHANES 1999–2014
15
作者 Yu-Jun ZHANG Jing-Jing SONG +9 位作者 Jian-Hao ZHAN Chu-Lin ZHOU Ao LI Mao-Qi WANG Ben-Jie LI Cong-Cong DING Yi-Wei ZHANG Zi-Heng TAN Zai-Hua CHENG Xiao HUANG 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第8期779-790,共12页
BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to in... BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis. 展开更多
关键词 HIGH finding Alcohol
下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies
16
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR Cu-based catalyst ALCOHOLS Reaction mechanism Regulation strategies
下载PDF
Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO_(2)reduction and aryl alcohol oxidation
17
作者 Jian Lei Nan Zhou +3 位作者 Shuaikang Sang Sugang Meng Jingxiang Low Yue Li 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期163-173,共11页
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles... Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications. 展开更多
关键词 Photocatalysis Atomically-dispersed metal SINGLE-ATOM CO_(2)reduction Aryl alcohol oxidation
下载PDF
Curcumin delivery nanoparticles based on Maillard reaction of Haematococcus pluvialis protein/galactose for alleviating acute alcoholic liver damage
18
作者 Xinyi Liu Yukun Song +1 位作者 Shasha Cheng Mingqian Tan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2629-2641,共13页
The aim of this study is to investigate the feasibility of Maillard reaction products of Haematococcus pluvialis protein and galactose(HPP-GAL)for improving the bioactivities of curcumin(CUR)for alleviating alcoholic ... The aim of this study is to investigate the feasibility of Maillard reaction products of Haematococcus pluvialis protein and galactose(HPP-GAL)for improving the bioactivities of curcumin(CUR)for alleviating alcoholic liver damage.CUR was embedded into HPP-GAL nanoparticles by the self-assembly of hydrogen bonding and hydrophobic interaction with the particle size around 200 nm.HPP-GAL enhanced the encapsulation efficiency and loading amount of CUR with the value of(89.21±0.33)%and(0.500±0.004)%,respectively.The stabilities of CUR under strong acid,salt ion stability and ultraviolet irradiation conditions were improved by the encapsulation.HPP-GAL-CUR nanoparticles exhibited excellent concentration-dependent in vitro antioxidant activities including DPPH and ABTS scavenging rates,and better protective effect on CUR against gastric acid environment as well as longer release of CUR in simulated intestinal fluid.In addition,the HPPGAL-CUR delivery system possessed liver targeting property due to the existence of GAL,which could effectively alleviate the alcohol-induced liver damage and the inflammation indexes by inhibiting the oxidative stress.Therefore,HPP-GAL-CUR nanoparticles might be a potential candidate system for the prevention of alcoholic liver damage in the future. 展开更多
关键词 Haematococcus pluvialis protein GALACTOSE Curcumin nanocarrier Maillard reaction Alcoholic liver damage Liver targeting
下载PDF
Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells
19
作者 Fengling Zhao Qiang Yuan +2 位作者 Siyang Nie Liang Wu Xun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期142-150,共9页
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)... Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources. 展开更多
关键词 Pt-based nanosheets Modifiedelectronic structure Enhanced hydroxyl adsorption Formicacidand alcohol oxidation Direct liquid fuel cells
下载PDF
A comparative study for petroleum removal capacities of the bacterial consortia entrapped in sodium alginate,sodium alginate/poly(vinyl alcohol),and bushnell haas agar
20
作者 Sezen Bilen Ozyurek 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期705-715,共11页
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol... The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies. 展开更多
关键词 Entrapment of bacterial consortia PETROLEUM RemovalBushnell Haas agar Sodium alginate Sodium alginate/poly(vinyl alcohol)
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部