In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environmen...Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environment, which current methods cannot effectively address. A normbased adaptive coefficient zeroing neural network(NACZNN) model to solve the TDARE problem is proposed.展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Based on the dynamic equation, the performance functional and the system constraint equation of time-invariant discrete LQ control problem, the generalized Riccati equations of linear equality constraint system are ob...Based on the dynamic equation, the performance functional and the system constraint equation of time-invariant discrete LQ control problem, the generalized Riccati equations of linear equality constraint system are obtained according to the minimum principle, then a deep discussion about the above equations is given, and finally numerical example is shown in this paper.展开更多
In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained ...In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation. Based on tan...To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation. Based on tanh-function expansion method and homogenous balance method, new infinite sequence of exact solutions to Zakharov-Kuznetsov equation, Karamotc-Sivashinsky equation and the set of (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations are obtained with the aid of symbolic computation system Mathematica. The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explici...The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.展开更多
With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a res...With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.展开更多
An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise in...An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise integration method (PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix. The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE. Based ,on the error analysis, the criterion for choosing two parameters of the PIM is given. Three kinds of IPIMs for solving the DRE are proposed. The numerical examples machine accuracy solutions. show that the IPIM is stable and gives the展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
Consider the difference Riccati equation f(z+1) =(A(z)f(z)+B(z))/(C(z)f(z)+D(z)),where A,B, C,D are meromorphic functions, we give its solution family with one-parameter H(f(z))={f_0(z),f(z)=((f_1(z)-f_0(z))(f_2(z)-f_...Consider the difference Riccati equation f(z+1) =(A(z)f(z)+B(z))/(C(z)f(z)+D(z)),where A,B, C,D are meromorphic functions, we give its solution family with one-parameter H(f(z))={f_0(z),f(z)=((f_1(z)-f_0(z))(f_2(z)-f_0(z)))/(Q(z)(f_2(z)-f_1(z))+(f_2(z)-f_0(z)))}, where Q(z) is any constant in C or any periodic meromorphic function with period 1, and f_0(z),f_1(z),f_2(z) are its three distinct meromorphic solutions.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is ...This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.展开更多
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitr...Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.展开更多
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
基金supported in part by the Natural Science Foundation of Guangdong Province,China(2021A 1515011847)Postgraduate Education Innovation Project of Guangdong Ocean University(202214,202250,202251,202159,202160)+1 种基金the Special Project in Key Fields of Universities in Department of Education of Guangdong Province(2019KZDZX1036)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province(2019GDDSIPL-01)。
文摘Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environment, which current methods cannot effectively address. A normbased adaptive coefficient zeroing neural network(NACZNN) model to solve the TDARE problem is proposed.
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
文摘Based on the dynamic equation, the performance functional and the system constraint equation of time-invariant discrete LQ control problem, the generalized Riccati equations of linear equality constraint system are obtained according to the minimum principle, then a deep discussion about the above equations is given, and finally numerical example is shown in this paper.
文摘In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
基金Project supported by the National Natural Science Foundation of China(Grant No.10461006)the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China(Grant No.NJZZ07031)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.200408020103)the Natural Science Research Program of Inner Mongolia Normal University,China(Grant No.QN005023)
文摘To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation. Based on tanh-function expansion method and homogenous balance method, new infinite sequence of exact solutions to Zakharov-Kuznetsov equation, Karamotc-Sivashinsky equation and the set of (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations are obtained with the aid of symbolic computation system Mathematica. The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
文摘The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.
基金The project supported by the National Key Basic Research Development Project Program under Grant No.G1998030600the Foundation of Liaoning Normal University
文摘With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.
基金Project supported by the National Natural Science Foundation of China(Nos.10902020 and 10721062)
文摘An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise integration method (PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix. The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE. Based ,on the error analysis, the criterion for choosing two parameters of the PIM is given. Three kinds of IPIMs for solving the DRE are proposed. The numerical examples machine accuracy solutions. show that the IPIM is stable and gives the
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金supported by the National Natural Science Foundation of China(11771090,11761035,11871260)the Natural Science Foundation of Guangdong Province in China(2016A030310106,2016A030313745)
文摘Consider the difference Riccati equation f(z+1) =(A(z)f(z)+B(z))/(C(z)f(z)+D(z)),where A,B, C,D are meromorphic functions, we give its solution family with one-parameter H(f(z))={f_0(z),f(z)=((f_1(z)-f_0(z))(f_2(z)-f_0(z)))/(Q(z)(f_2(z)-f_1(z))+(f_2(z)-f_0(z)))}, where Q(z) is any constant in C or any periodic meromorphic function with period 1, and f_0(z),f_1(z),f_2(z) are its three distinct meromorphic solutions.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
文摘This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071), the Natural Science Foundation of Zhejiang Province, China (Grant No Y606049) and the Key Academic Discipline of Zhejiang Province, China (Grant No 200412). Acknowledgments The authors are indebted to Professors Zhang J F, Zheng C L and Drs Zhu J M, Huang W H for their helpful suggestions and fruitful discussions.
文摘Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.