Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and...Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.展开更多
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging...The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.展开更多
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of...Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ...Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.展开更多
A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calci...A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed.展开更多
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a...The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.展开更多
Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades...Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades.Despite the absence of definitive etiological elucidation,therapeutic strategies predominantly revolve around pharmacological interventions aimed at symptom mitigation.Alginate(AG)is a polysaccharide of marine origin that has garnered significant attention due to its inherent biocompatibility,pH sensitivity,and cross-linking.Its exploration within drug delivery systems for IBD treatment stems from its natural sourcing,non-cytotoxic nature,and economic viability.Notably,AG demonstrates facile interpolymeric cross-linking,facilitating the formation of a cohesive network conducive to sustained drug release kinetics.AG-based carrier systems for sustained drug release,and targeted drug delivery have been widely studied.This article reviews the pathogenesis of IBD and the current drugs,AG-based drug delivery systems and their properties in alleviating IBD.The prospect of further development of AG in the field of biopharmaceutical and drug delivery is prospected.展开更多
In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation wa...In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.展开更多
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the su...To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...展开更多
Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects...Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite.展开更多
The absorption of Pb(Ⅱ) ions from aqueous solution by different alginate compounds was studied in a batch sorption system.Water soluble sodium alginate and insoluble calcium alginate beads were investigated.The lead-...The absorption of Pb(Ⅱ) ions from aqueous solution by different alginate compounds was studied in a batch sorption system.Water soluble sodium alginate and insoluble calcium alginate beads were investigated.The lead-binding capacity of both alginate compounds was highest within the pH range 6-8.The binding capacities and rates of Pb(lI) ions by alginate compounds were evaluated.The Langmuir,Freundlich,and Bruneaur,Emmet and Teller (BET) sorption models were applied to describe the isotherms and isotherm con...展开更多
Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechan...Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function,as well as epithelium apoptosis.Methods: Twenty-four weaned pigs were distributed into two groups(n = 12) and received either a basal diet(control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose(0.1 g/kg body weight)was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later.Results: Our results showed that inclusion of AOS in the diet for 2 wk increased(P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced(P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased(P < 0.05) the total apoptotic percentage and increased(P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated(P < 0.05) the B-cell lymphoma-2(BCL2) transcriptional level but also down-regulated(P < 0.05) the B-cell lymphoma-2-associated X protein(BAX), cysteinyl aspartate-specific proteinase-3(caspase-3) and caspase-9 transcriptional levels in the small intestine.Conclusions: In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function,as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis.展开更多
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely use...Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely used in food,textile and paper industries;and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration.This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays.However,alginate also has limitation.When in contact with physiological environment,alginate could gelate into softer structure,consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts.To cater this problem,wide range of materials have been added to alginate structure,producing sturdy composite materials.For instance,the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material,which not only possesses better mechanical properties compared to native alginate,but also grants additional healing capability and promote better tissue regeneration.In addition,drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent.In this review,preparation of alginate and alginate composite in various forms(fibre,bead,hydrogel,and 3D-printed matrices)used for biomedical application is described first,followed by the discussion of latest trend related to alginate composite utilization in wound dressing,drug delivery,and tissue engineering applications.展开更多
One interpenetrating network hydrogel based on sodium alginate (SA) and polyvinyl alcohol (PVA) was synthesized by combining the raw materials of PVA and SA with the double physical crosslinking methods of freezing th...One interpenetrating network hydrogel based on sodium alginate (SA) and polyvinyl alcohol (PVA) was synthesized by combining the raw materials of PVA and SA with the double physical crosslinking methods of freezing thawing and Ca2+ crosslinking. The PVA-SA composite hydrogel have been characterized by scanning electron microscopy for surface morphology, infrared spectroscopy for investigating the chemical interactions between PVA and SA, X-ray diffraction for studying the PVA-SA composite structure property and thermal gravimetric for understanding the PVA-SA composite thermal stability. The swelling behavior and the degradation rate of the PVA-SA composite hydrogel were studied in simulated gastrointestinal fluid. Using bovine serum albumin (BSA) and salicylic acid as the model drugs, the release behavior of the PVASA composite hydrogel on macromolecular protein drugs and small molecule drug were evaluated. The results showed that the water absorption and degradation ability of the PVA-SA composite hydrogel was much better compared to the pure SA hydrogel or pure PVA hydrogel. The hydrogel exhibited remarkable pH sensitivity and the network was stable in the simulated intestinal fluid for more than 24 h. With the advantages such as mild preparation conditions, simple method, less reagent and none severe reaction, the PVA-SA composite hydrogel is expected to be a new prosperous facile sustained drug delivery carrier.展开更多
Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. C...Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb 2+ than usual ion exchange resins. The highest percentage of the adsorption is 99 79%. The limiting adsorption mass concentration is 0 0426 mg/L. The adsorption capacity for Pb 2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb 2+ than for Ca 2+ and the selectivity coefficient K Pb Ca is 316. As an ion cross\|linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb 2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.展开更多
Hybrid membranes combining the merits of both polymer matrices and fillers have drawn extensive attention. The rational design of polymer–filler interface in hybrid membranes is vitally important for reducing the occ...Hybrid membranes combining the merits of both polymer matrices and fillers have drawn extensive attention. The rational design of polymer–filler interface in hybrid membranes is vitally important for reducing the occurrence of void defects. Herein, imine-type covalent organic frameworks(COFs) were selected as the fillers due to their totally organic nature and multi-functionalities. Mussel-inspired dopamine-modified sodium alginate(Alg DA) was synthesized as the polymer matrix. The dopamine modification significantly improves the Alg DA–COF compatibility,which enhances the COF content up to 50 wt% in the hybrid membranes. The improved interfacial compatibility enhances the membrane separation selectivity. Accordingly, when utilized for dehydration of ethanol/water mixed solution(water concentration of 10 wt%), the hybrid membrane reveals high water concentration of ~98.7 wt% in permeate, and stable permeation flux larger than 1500 g·m-2·h-1. This work might afford useful insights for fabricating hybrid membranes with high separation selectivity by optimizing the polymer–filler interface.展开更多
基金National Key Research and Development Program(2022YFA1104604,2017YFC1103303)Science Fund for National Defense Distinguished Young Scholars(2022-JCJQ-ZQ-016)+2 种基金National Nature Science Foundation of China(32000969,82002056,92268206)Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZD-096-00)Key Support Program for Growth Factor Research(SZYZ-TR-03).
文摘Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
文摘The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.
基金The authors are thankful to Ministry of Human Resource Development(presently Ministry of Education),Government of India,New Delhi,for providing research facility by sanctioning Center of Excellence(F.No.5-6/2013-TS VII)in Tissue Engineering and Center of Excellence in Orthopedic Tissue Engineering and Rehabilitation funded by World Bank under TEQIP-II.
文摘Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金This research was funded and supported by the National Natural Science Foundation of China(Grant Number 32001443)Zhengzhou Major Science and Technology Innovation Project of Henan Province of China(Grant Number 2020CXZX0085)Science and Technology Inovation Team of Henan Academy of Agricultural Sciences(Grant Number 2024TD2).
文摘Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.
文摘A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively.
基金supported by the China Postdoctoral Science Foundation(Grant No.2021MD703801)Youth Talent Cultivation Fund Project of Dalian Medical University(Grant No.508021)Open Foundation of the State Key Laboratory of Marine Food Processing&Safety Control(Grant No.SKL2023M03).
文摘Inflammatory bowel disease(IBD)represents a chronic inflammatory condition profoundly impacting the gastrointestinal tract.Its prevalence has markedly risen in both developed and developing nations over recent decades.Despite the absence of definitive etiological elucidation,therapeutic strategies predominantly revolve around pharmacological interventions aimed at symptom mitigation.Alginate(AG)is a polysaccharide of marine origin that has garnered significant attention due to its inherent biocompatibility,pH sensitivity,and cross-linking.Its exploration within drug delivery systems for IBD treatment stems from its natural sourcing,non-cytotoxic nature,and economic viability.Notably,AG demonstrates facile interpolymeric cross-linking,facilitating the formation of a cohesive network conducive to sustained drug release kinetics.AG-based carrier systems for sustained drug release,and targeted drug delivery have been widely studied.This article reviews the pathogenesis of IBD and the current drugs,AG-based drug delivery systems and their properties in alleviating IBD.The prospect of further development of AG in the field of biopharmaceutical and drug delivery is prospected.
基金The National Natural Science Foundation of China(No.21005016)the Foundation of Educational Commission of Jiangsu Province(No.JHB2011-2)
文摘In order to improve the substrate diffusion properties and stability of an immobilized enzyme alginate microgels modified with TiO2 nanoparticles were employed as the enzyme immobilizing support.Ionotropic gelation was applied for the preparation of hybrid gels while Ca2+ Ce3+ Ni2+Cu2+and Fe3+were employed as the crosslinkers.Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability.Analysis results show that the highest affinity the lowest Michaelis-Menten constant Km =11.0 mg/mL and the highest stability are obtained when using Cu2+as the crosslinker.The effect of the mass ratio of TiO2 to papain on the stability and leakage of papain is also investigated and the results show that 10∶1 TiO2∶papain is optimal because the proper use of TiO2 can reduce enzyme leakage and ensure enzyme stability.Preparing Cu/alginate/TiO2 hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA02Z218)the Open Project Program of Key Lab-oratory of Eco-Textiles,Jiangnan University,Ministry of Education,China(No.KLET0625) the Youth Fundof Jiangnan University(No.2006LQN002).
文摘To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...
基金financially supported by the National Natural Science Foundation of China(Nos.51504053 and 51374079)the Fundamental Research Funds for the Central Universities(No.N170107013)
文摘Given the gradual increase in the chlorite content of hematite ores, pulp properties seriously deteriorate during flotation. The traditional anion reverse flotation of hematite cannot effectively eliminate the effects of chlorite, leading to a significant decrease in the total Fe(TFe) grade of the concentrate. In this work, the effect of sodium alginate on the reverse flotation of hematite was systematically investigated. Flotation tests of artificially mixed ores were conducted, and the results showed that sodium alginate can significantly improve the removal rates of quartz and chlorite. The adsorption measurements, infrared spectroscopy, and contact angle tests demonstrated that sodium alginate adsorbs on the quartz surface by chelating with calcium ions, thereby weakening the steric hindrance of oleate ions and increasing the adsorption capacity of sodium oleate to ultimately improve the removal rate of quartz. Furthermore, owing to its lower density and fine particle size, chlorite is easily entrained into the foam layer. Sodium alginate dramatically increases the liquid-to-gas ratio of the foam layer by increasing pulp viscosity, thereby increasing the entrainment rate of chlorite and finally improving its removal rate. The core content of this thesis bears significance in improving the Fe grade in the reverse flotation of chlorite-containing hematite.
文摘The absorption of Pb(Ⅱ) ions from aqueous solution by different alginate compounds was studied in a batch sorption system.Water soluble sodium alginate and insoluble calcium alginate beads were investigated.The lead-binding capacity of both alginate compounds was highest within the pH range 6-8.The binding capacities and rates of Pb(lI) ions by alginate compounds were evaluated.The Langmuir,Freundlich,and Bruneaur,Emmet and Teller (BET) sorption models were applied to describe the isotherms and isotherm con...
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201403047)
文摘Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function,as well as epithelium apoptosis.Methods: Twenty-four weaned pigs were distributed into two groups(n = 12) and received either a basal diet(control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose(0.1 g/kg body weight)was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later.Results: Our results showed that inclusion of AOS in the diet for 2 wk increased(P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced(P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased(P < 0.05) the total apoptotic percentage and increased(P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated(P < 0.05) the B-cell lymphoma-2(BCL2) transcriptional level but also down-regulated(P < 0.05) the B-cell lymphoma-2-associated X protein(BAX), cysteinyl aspartate-specific proteinase-3(caspase-3) and caspase-9 transcriptional levels in the small intestine.Conclusions: In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function,as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis.
基金The authors acknowledge the financial support received from Ministry of Education Malaysia(FRGS/1/2018/TK05/UIAM/03/3).Writing on fibre preparation,chitin,and chitosan are directly related to the said grant.
文摘Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp.and Pseudomonas sp.Owing to alginate gel forming capability,it is widely used in food,textile and paper industries;and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration.This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays.However,alginate also has limitation.When in contact with physiological environment,alginate could gelate into softer structure,consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts.To cater this problem,wide range of materials have been added to alginate structure,producing sturdy composite materials.For instance,the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material,which not only possesses better mechanical properties compared to native alginate,but also grants additional healing capability and promote better tissue regeneration.In addition,drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent.In this review,preparation of alginate and alginate composite in various forms(fibre,bead,hydrogel,and 3D-printed matrices)used for biomedical application is described first,followed by the discussion of latest trend related to alginate composite utilization in wound dressing,drug delivery,and tissue engineering applications.
基金Funded by the National Natural Science Foundation of China(No.81401510)Hubei Provincial Natural Science Foundation of China(No.2017CFB414)+1 种基金the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(No.CZY19030)the National College Students Innovation and Entrepreneurship Training Project(No.GCX16034)
文摘One interpenetrating network hydrogel based on sodium alginate (SA) and polyvinyl alcohol (PVA) was synthesized by combining the raw materials of PVA and SA with the double physical crosslinking methods of freezing thawing and Ca2+ crosslinking. The PVA-SA composite hydrogel have been characterized by scanning electron microscopy for surface morphology, infrared spectroscopy for investigating the chemical interactions between PVA and SA, X-ray diffraction for studying the PVA-SA composite structure property and thermal gravimetric for understanding the PVA-SA composite thermal stability. The swelling behavior and the degradation rate of the PVA-SA composite hydrogel were studied in simulated gastrointestinal fluid. Using bovine serum albumin (BSA) and salicylic acid as the model drugs, the release behavior of the PVASA composite hydrogel on macromolecular protein drugs and small molecule drug were evaluated. The results showed that the water absorption and degradation ability of the PVA-SA composite hydrogel was much better compared to the pure SA hydrogel or pure PVA hydrogel. The hydrogel exhibited remarkable pH sensitivity and the network was stable in the simulated intestinal fluid for more than 24 h. With the advantages such as mild preparation conditions, simple method, less reagent and none severe reaction, the PVA-SA composite hydrogel is expected to be a new prosperous facile sustained drug delivery carrier.
文摘Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb 2+ than usual ion exchange resins. The highest percentage of the adsorption is 99 79%. The limiting adsorption mass concentration is 0 0426 mg/L. The adsorption capacity for Pb 2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb 2+ than for Ca 2+ and the selectivity coefficient K Pb Ca is 316. As an ion cross\|linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb 2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.
基金Supported by the National Natural Science Foundation of China(21621004,21490583,21878215,21878216)the Program of Introducing Talents of Discipline to Universities(B06006)the State Key Laboratory of Organic–Inorganic Composites(oic-201801003).
文摘Hybrid membranes combining the merits of both polymer matrices and fillers have drawn extensive attention. The rational design of polymer–filler interface in hybrid membranes is vitally important for reducing the occurrence of void defects. Herein, imine-type covalent organic frameworks(COFs) were selected as the fillers due to their totally organic nature and multi-functionalities. Mussel-inspired dopamine-modified sodium alginate(Alg DA) was synthesized as the polymer matrix. The dopamine modification significantly improves the Alg DA–COF compatibility,which enhances the COF content up to 50 wt% in the hybrid membranes. The improved interfacial compatibility enhances the membrane separation selectivity. Accordingly, when utilized for dehydration of ethanol/water mixed solution(water concentration of 10 wt%), the hybrid membrane reveals high water concentration of ~98.7 wt% in permeate, and stable permeation flux larger than 1500 g·m-2·h-1. This work might afford useful insights for fabricating hybrid membranes with high separation selectivity by optimizing the polymer–filler interface.