This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic nois...Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.展开更多
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising...In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.展开更多
The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain ...The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain has become very important,and effective coordination of project plans at all levels to optimize the resource management and scheduling of a project is helpful to reduce project duration and cost.In this paper,under the milestone constraint conditions,the scheduling problems of multiple construction devices in the same sequence of operation were described and hypothesized mathematically,and the scheduling models of multiple equipment were established.The Palmer algorithm,CDS algorithm and Gupta algorithm were respectively used to solve the optimal scheduling of construction equipment to achieve the optimization of the construction period.The optimization scheduling of a single construction device and multiple construction devices was solved by using sequencing theory under milestone constraint,and these methods can obtain reasonable results,which has important guiding significance for the scheduling of construction equipment.展开更多
In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but someh...In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.展开更多
Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorith...Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.展开更多
There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution o...There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.展开更多
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ...There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.展开更多
A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. ...A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. The arclength continuation algorithm is incorporated as a process entity in gPROMS to overcome the limit of turning points and get multiple solutions with respect to a user-defined parameter. The bifurcation points are detected through a bifurcation test function τ which is written in C ++ routine as a foreign object connected with gPROMS through Foreign Process Interface. The stability analysis is realized by evaluating eigenvalues of the Jacobian matrix of each steady state solution. Two reference cases of an adiabatic CSTR and a homogenous azeotropic distillation from literature are studied, which successfully validate the reliability of the proposed approach. Besides the multiple steady states and Hopf bifurcation points, a more complex homoclinic bifurcation behavior is found for the distillation case compared to literature.展开更多
This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure ...This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non...The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.展开更多
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s...Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.展开更多
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d...In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.展开更多
In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the d...In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the driver through the mobile phone navigation software, which plays a more auxiliary driving role. This paper presents a method of vehicle trajectory deviation detection. Firstly, the manager customizes the trajectory planning and then uses big data technologies to match the deviation between the trajectory planning and the vehicle trajectory. Finally, it achieves the supervisory function of the manager on the vehicle track route in real-time. The results show that this method could detect the vehicle trajectory deviation quickly and accurately, and has practical application value.展开更多
Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.A...Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.展开更多
This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition ...This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.展开更多
The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weat...The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.展开更多
Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is dif...Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.展开更多
A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base...A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.展开更多
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
基金the Ministry of Science and Higher Education of the Russian Federation under Grant No.FSUN-2023-0007.
文摘Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Postdoctoral Scientific Program of Jiangsu Province(No.0701045B)
文摘In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.
文摘The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain has become very important,and effective coordination of project plans at all levels to optimize the resource management and scheduling of a project is helpful to reduce project duration and cost.In this paper,under the milestone constraint conditions,the scheduling problems of multiple construction devices in the same sequence of operation were described and hypothesized mathematically,and the scheduling models of multiple equipment were established.The Palmer algorithm,CDS algorithm and Gupta algorithm were respectively used to solve the optimal scheduling of construction equipment to achieve the optimization of the construction period.The optimization scheduling of a single construction device and multiple construction devices was solved by using sequencing theory under milestone constraint,and these methods can obtain reasonable results,which has important guiding significance for the scheduling of construction equipment.
文摘In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.
文摘Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
基金supported in part by National Natural Science Fundation of China under Grant No.61202458,61403109
文摘There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.
文摘There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.
基金Supported by the National Natural Science Foundation of China(21576081)Major State Basic Research Development Program of China(2012CB720502)111 Project(B08021)
文摘A bifurcation analysis approach is developed based on the process simulator gPROMS platform, which can automatically trace a solution path, detect and pass the bifurcation points and check the stability of solutions. The arclength continuation algorithm is incorporated as a process entity in gPROMS to overcome the limit of turning points and get multiple solutions with respect to a user-defined parameter. The bifurcation points are detected through a bifurcation test function τ which is written in C ++ routine as a foreign object connected with gPROMS through Foreign Process Interface. The stability analysis is realized by evaluating eigenvalues of the Jacobian matrix of each steady state solution. Two reference cases of an adiabatic CSTR and a homogenous azeotropic distillation from literature are studied, which successfully validate the reliability of the proposed approach. Besides the multiple steady states and Hopf bifurcation points, a more complex homoclinic bifurcation behavior is found for the distillation case compared to literature.
文摘This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
基金National Natural Science Foundation of China under Grant Nos.51978337 and U2039209。
文摘The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.
基金This work was supported by the Serbian Ministry of Science and Education(project TR-32022)by companies Telekom Srbija and Informatika.
文摘Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.
文摘In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact.
文摘In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the driver through the mobile phone navigation software, which plays a more auxiliary driving role. This paper presents a method of vehicle trajectory deviation detection. Firstly, the manager customizes the trajectory planning and then uses big data technologies to match the deviation between the trajectory planning and the vehicle trajectory. Finally, it achieves the supervisory function of the manager on the vehicle track route in real-time. The results show that this method could detect the vehicle trajectory deviation quickly and accurately, and has practical application value.
文摘Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.
基金supported by the National Natural Science Foundation of China(61101179)
文摘This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2016-04-03the National Key Research and Development Program of China under contract No.2016YFC1402701
文摘The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60873216Scientific and Technological Research Priority Projects of Sichuan Province under Grant No. 2012GZ0017Basic Research of Application Fund Project of Sichuan Province under Grant No. 2011JY0100
文摘Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.
基金The National Natural Science Foundation of China(No.61771126,61372104)the Science and Technology Project of State Grid Corporation of China(o.SGRIXTKJ[2015] 349)
文摘A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.