The removal of surface oligomers from polyester fiber was investigated by an Ultrasonic / Alkali System. Effects of concentration of alkali, temperature, time and ultrasonic frequency were discussed. It was found tbat...The removal of surface oligomers from polyester fiber was investigated by an Ultrasonic / Alkali System. Effects of concentration of alkali, temperature, time and ultrasonic frequency were discussed. It was found tbat Ultrasonic / Alkali System could decrease remarkably surface oligomers content of polyester fiber dyed by HIP without influencing the dyeing properties of the fiber.展开更多
Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordi...Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.展开更多
A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of oper...A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of operating parameters such as pH value and catalyst concentration on the oxidation were studied. Sodium thiosulfate was used in the system, and was found that it significantly inhabited the sulfite oxidation. In the absence of catalyst, sodium thiosulfate at 12.67 mmol/L had an inhibition efficiency of approximately 98%. While in the presence of catalyst, sodium thiosulfate at 26.72 mmol/L had an inhibition efficiency less than 85.0%. The oxidation reaction order of sulfite in the sodium thiosulfate was determined to be -1.90 and 4).55 in the absence and presence of the catalyst, respectively. Apparent activation energy of oxidation inhibition was calculated to be 53.9 kJ/mol. Pilot tests showed that the consumption rate of thiosulfate agreed well with the laboratory-scale experimental results.展开更多
Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia ...Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.展开更多
The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,inter...The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.展开更多
A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems ...A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pas- toral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloafusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combi- nation with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha-1) and A. nilotica (63.20 t·ha-1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha-1 and 52.75 t·ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reduc- ing soil pH, displacing Na+ from the exchange complex, increasing or- ganic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation ofhighly alkali soils.展开更多
This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, s...This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.展开更多
The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodiu...The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.展开更多
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mix...The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mixing enthalpy values show non-linear behaviour upon substitution of one alkali ion by another. This thermodynamic non-ideality is caused by the slight variations of distance between metallic cations, the macromolecular structure being unchanged. It can be explained, at least qualitatively, using electrolyte theory based on the Coulombic interactions of charged species originally developed by Debye and Hückel.展开更多
The glasses of the type (30 一 x)Li2O 一 xK2O 一 10CdO 一 59B2O3 doped with 1 mol% of Fe2O3 were prepared by melt quench technique and their non-crystallinility has been established by XRD studies. The glasses were in...The glasses of the type (30 一 x)Li2O 一 xK2O 一 10CdO 一 59B2O3 doped with 1 mol% of Fe2O3 were prepared by melt quench technique and their non-crystallinility has been established by XRD studies. The glasses were investigated for room temperature density and electrical conductivity in the temperature range 300 - 523 K and in the frequency range 102 to 105 Hz. The frequency and temperature dependence of conductivity as dielectric constant are presented.展开更多
Viologens known as a kind of promising negolyte materials for aqueous organic redox flow batteries,face a critical stability challenge due to the S_N2 nucleophilic attack by hydroxide ions(OH-)during the battery cycli...Viologens known as a kind of promising negolyte materials for aqueous organic redox flow batteries,face a critical stability challenge due to the S_N2 nucleophilic attack by hydroxide ions(OH-)during the battery cycling.In this work,a N-cyclic quaternary ammonium-grafted viologen molecule,viz.1,1'-bis(4,4'-dime thylpiperidiniumyl)-4,4'-bipyridinium tetrachloride((DBPPy)Cl_(4)),is developed by the molecular engineering strategy.The obtained(DBPPy)Cl_(4) molecule shows a decent solubility of 1.84 M and a redox potential of-0.52 V vs.Ag/AgCl,Experimental and theoretical results reveal that the grafted N-cyclic quaternary ammonium groups act as the steric hindrance to prevent nucleophilic attack by OH~-,increasing the alkali resistance of the electroactive molecule.The symmetrical battery with 0.50 M(DBPPy)Cl4shows negligible decay during the 13-day cycling test.As demonstration,the flow battery utilizing 1.0 M(DBPPy)Cl_(4) as the negolyte and 1-(1-oxyl-2,2',6,6'-tetramethylpiperidin-4-yl)-1'-(3-(trimethylammonio)propyl)-4,4'-bipyridinium trichloride as the posolyte exhibits a high capacity retention rate of 99.99%per cycle at 60 mA cm^(-2).展开更多
1.Introduction and context Enormous emphasis is currently being paid to the decarbonization of the global built environment as a leading priority for the engineering community and related industrial sectors[1].One of ...1.Introduction and context Enormous emphasis is currently being paid to the decarbonization of the global built environment as a leading priority for the engineering community and related industrial sectors[1].One of the main contributors to the overall emissions footprint of the built environment-and thus a cornerstone of efforts to achieve decarbonization-is the emissions profile of construction materials during their production and utilization.The cement and concrete sector is the largest-volume contributor to the emissions incurred in meeting the world’s construction material needs and is therefore targeted in the discussion of the deep,rapid decarbonization that must be achieved in order to minimize irreversible damage to the Earth and its ecosystems.展开更多
Hypercalcemic crises as a result of milk-alkali syndrome(MAS)are an uncommon cause of altered mental status and acute renal failure in the emergency department.Although it is uncommonly reported in the emergency medic...Hypercalcemic crises as a result of milk-alkali syndrome(MAS)are an uncommon cause of altered mental status and acute renal failure in the emergency department.Although it is uncommonly reported in the emergency medicine literature,emergency physicians should be aware of this syndrome due to significant morbidity and mortality if left undiagnosed.展开更多
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely ac...The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.展开更多
Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-...Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-alkali conditions is unclear.This study conducted a 147-day field-scale experiment to evaluate rice biomass and nutrient absorption capacity with five N-fertilizer applications.The results showed that the biomass.展开更多
This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s...This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.展开更多
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
文摘The removal of surface oligomers from polyester fiber was investigated by an Ultrasonic / Alkali System. Effects of concentration of alkali, temperature, time and ultrasonic frequency were discussed. It was found tbat Ultrasonic / Alkali System could decrease remarkably surface oligomers content of polyester fiber dyed by HIP without influencing the dyeing properties of the fiber.
文摘Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.
基金Preoject supported by the Hi-Tech Research and Development Program (863) of China (No. 2001AA642030-1)the Key Research Project of Zhejiang Province (No. 2004C23028)New Century Excellent Scholar Program of Ministry of Education of the People's Republic of China (No.NCET-04-0549)
文摘A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of operating parameters such as pH value and catalyst concentration on the oxidation were studied. Sodium thiosulfate was used in the system, and was found that it significantly inhabited the sulfite oxidation. In the absence of catalyst, sodium thiosulfate at 12.67 mmol/L had an inhibition efficiency of approximately 98%. While in the presence of catalyst, sodium thiosulfate at 26.72 mmol/L had an inhibition efficiency less than 85.0%. The oxidation reaction order of sulfite in the sodium thiosulfate was determined to be -1.90 and 4).55 in the absence and presence of the catalyst, respectively. Apparent activation energy of oxidation inhibition was calculated to be 53.9 kJ/mol. Pilot tests showed that the consumption rate of thiosulfate agreed well with the laboratory-scale experimental results.
基金supported by the earmarked fund for the China Agriculture Research System (CARS-27)
文摘Soil alkalinity is a major factor that restricts the growth of apple roots.To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2006CB705805)the National Key Scientific and Technological Project (863 Project)(Grant No.2008ZX05011)
文摘The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.
文摘A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pas- toral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloafusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combi- nation with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha-1) and A. nilotica (63.20 t·ha-1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha-1 and 52.75 t·ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reduc- ing soil pH, displacing Na+ from the exchange complex, increasing or- ganic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation ofhighly alkali soils.
基金project is supported by the National Key R&D Program of China (No. 2016YFC0501307)the Key R&D Program of Ningxia Hui Autonomous Region (No. 2018BBF23008)
文摘This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.
基金National Basic Research Program of China(973 Program)
文摘The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
文摘The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mixing enthalpy values show non-linear behaviour upon substitution of one alkali ion by another. This thermodynamic non-ideality is caused by the slight variations of distance between metallic cations, the macromolecular structure being unchanged. It can be explained, at least qualitatively, using electrolyte theory based on the Coulombic interactions of charged species originally developed by Debye and Hückel.
文摘The glasses of the type (30 一 x)Li2O 一 xK2O 一 10CdO 一 59B2O3 doped with 1 mol% of Fe2O3 were prepared by melt quench technique and their non-crystallinility has been established by XRD studies. The glasses were investigated for room temperature density and electrical conductivity in the temperature range 300 - 523 K and in the frequency range 102 to 105 Hz. The frequency and temperature dependence of conductivity as dielectric constant are presented.
基金jointly supported by the Guangdong Major Project of Basic and Applied Basic Research (2023B0303000002)National Natural Science Foundation of China (22178126,22325802,U22A20417,22208110)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2023B1515120005)Science and Technology Program of Guangzhou (2023B03J1281,2023A04J1357)China Postdoctoral Science Foundation (2023T160223)the State Key Laboratory of Pulp and Paper Engineering (2023ZD03)。
文摘Viologens known as a kind of promising negolyte materials for aqueous organic redox flow batteries,face a critical stability challenge due to the S_N2 nucleophilic attack by hydroxide ions(OH-)during the battery cycling.In this work,a N-cyclic quaternary ammonium-grafted viologen molecule,viz.1,1'-bis(4,4'-dime thylpiperidiniumyl)-4,4'-bipyridinium tetrachloride((DBPPy)Cl_(4)),is developed by the molecular engineering strategy.The obtained(DBPPy)Cl_(4) molecule shows a decent solubility of 1.84 M and a redox potential of-0.52 V vs.Ag/AgCl,Experimental and theoretical results reveal that the grafted N-cyclic quaternary ammonium groups act as the steric hindrance to prevent nucleophilic attack by OH~-,increasing the alkali resistance of the electroactive molecule.The symmetrical battery with 0.50 M(DBPPy)Cl4shows negligible decay during the 13-day cycling test.As demonstration,the flow battery utilizing 1.0 M(DBPPy)Cl_(4) as the negolyte and 1-(1-oxyl-2,2',6,6'-tetramethylpiperidin-4-yl)-1'-(3-(trimethylammonio)propyl)-4,4'-bipyridinium trichloride as the posolyte exhibits a high capacity retention rate of 99.99%per cycle at 60 mA cm^(-2).
基金funded by the Engineering and Physical Sciences Research Council(EPSRC),UK(EP/S019650/1)funded by EPSRC via an Early Career Fellowship grant(EP/R001642/1)+2 种基金the Transforming Foundation Industries:Network+Towards Value by Innovation(EP/V026402/1)funded by the National Nature Science Foundation of China(U2001225)Fundamental Research Funds for the Central Universities(22120230174 at Tongji University),and Geopoly Fundamental Genomic Research project.
文摘1.Introduction and context Enormous emphasis is currently being paid to the decarbonization of the global built environment as a leading priority for the engineering community and related industrial sectors[1].One of the main contributors to the overall emissions footprint of the built environment-and thus a cornerstone of efforts to achieve decarbonization-is the emissions profile of construction materials during their production and utilization.The cement and concrete sector is the largest-volume contributor to the emissions incurred in meeting the world’s construction material needs and is therefore targeted in the discussion of the deep,rapid decarbonization that must be achieved in order to minimize irreversible damage to the Earth and its ecosystems.
文摘Hypercalcemic crises as a result of milk-alkali syndrome(MAS)are an uncommon cause of altered mental status and acute renal failure in the emergency department.Although it is uncommonly reported in the emergency medicine literature,emergency physicians should be aware of this syndrome due to significant morbidity and mortality if left undiagnosed.
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3504100 and 2022YFB3504102)Natural National Science Foundation of China(No.22276133)+1 种基金Natural National Science Foundation of China(No.U20A20132)Natural National Science Foundation of China(No.52106180).
文摘The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.
基金supported by the Excellent Youth Foundation of Jilin Province,China(Grant No.20230101361JC)the National Natural Science Foundation of China(Grant No.U21A2037)+1 种基金the CAS Interdisciplinary Innovation Team Project(Grant No.JCTD-2020-14)the Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)(Grant No.Y2021068)。
文摘Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-alkali conditions is unclear.This study conducted a 147-day field-scale experiment to evaluate rice biomass and nutrient absorption capacity with five N-fertilizer applications.The results showed that the biomass.
文摘This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.