Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully...Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.展开更多
A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor ...A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.展开更多
The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid wi...The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.展开更多
The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four yea...The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.展开更多
An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost...An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost. However, it is well known that flow-accelerated corrosion (FAC) occurs on the pipe wall downstream of the orifice. Some of the authors have examined FAC through experimental and numerical analyses and have reported that one of the major governing parameters of FAC for single-phase water flow is the pressure fluctuation p’ on the pipe wall, and also that pipe wall thinning rate TR can be estimated by p’. In addition, they have presented the effects of the ori-fice geometry on p’ or TR, and have described a method for suppressing p’ or TR. In the present study, FAC for a two-phase air-water bubble flow is examined and compared with the single-phase water flow experimentally. Further, it is shown that because p’ is also considered a governing parameter of FAC for a two-phase air-water bubble flow, TR can be estimated using p’. It is also indicated that, by using a downstream pipe with a smaller diameter than that of the upstream pipe, p’ or TR can be suppressed.展开更多
A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon ...A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon interaction with 50 mJ laser pulses,the 18μm jet has a resonance amplitude of 16μm at a repetition rate of 33 Hz,while towards 100 Hz it converges to 10μm for all nozzles.A white-light interferometric system was developed to measure the liquid sheet thickness in the target chamber both in air and in vacuum,with a measurement range of 182 nm±1μm and an accuracy of±3%.The overall shape and 3D shape of the sheet follow the Hasson±Peck model in air.In vacuum versus air,the sheet gradually loses 10%of its thickness,so the thinnest sheet achieved was below 200 nm at a vacuum level of 10±4mbar,and remained stable for several hours of operation.展开更多
基金grateful funding provided by National Key Research and Development Program of China(Project 2019YFC1906202)Guangxi Key Research and Development Plan(Guike AB19259008)Major Science and Technology Special Project of Guangxi Province(Guike AA18242007-3).
文摘Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.
基金supported by the National Natural Science Foundation of China(Nos. 51775483 and 51275447)the Research Innovation Program for College Graduates of Jiangsu Province(No.SJLX_0589)
文摘A linear acceleration sensor,which is inspired by the human balance organ,is designed and prepared. It uses a liquid mass-block and a symmetrical-electrodes metal-core polyvinylidene fluoride fiber(SMPF)as the sensor element. The output signal of the sensor has an exponential relationship with the excitation amplitude of the impacting vibration. It is capable of detecting the amplitude and the correct frequency for sinusoidal excitations using an exponential correlation. The experiments indicate that both the output signal of the sensor and the resonance frequency increase substantially with increasing diameter of the metal core. The first-order resonance frequencies of the sensors with 40,60,and 80 μm diameter metal wires are below 10 Hz,which is near the range of human body motion frequencies.
基金This work was supported by the sponsorship of the National Science Foundation for Distinguished Young Scholars of China (51125032), the sponsorship of the National Key Research and Development Program of China (2016YFC0204500), and the National Natural Science Foundation of China (51608203).
文摘The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.
文摘The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.
文摘An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost. However, it is well known that flow-accelerated corrosion (FAC) occurs on the pipe wall downstream of the orifice. Some of the authors have examined FAC through experimental and numerical analyses and have reported that one of the major governing parameters of FAC for single-phase water flow is the pressure fluctuation p’ on the pipe wall, and also that pipe wall thinning rate TR can be estimated by p’. In addition, they have presented the effects of the ori-fice geometry on p’ or TR, and have described a method for suppressing p’ or TR. In the present study, FAC for a two-phase air-water bubble flow is examined and compared with the single-phase water flow experimentally. Further, it is shown that because p’ is also considered a governing parameter of FAC for a two-phase air-water bubble flow, TR can be estimated using p’. It is also indicated that, by using a downstream pipe with a smaller diameter than that of the upstream pipe, p’ or TR can be suppressed.
基金The project has been supported by the National Research,Development,and Innovation Office through the National Laboratory program(contract Nos.NKFIH-877-2/2020,NKFIH-476-4/2021 and NKFIH-476-16/2021)The ELIALPS project(GINOP-2.3.6-15-2015-00001)is supported by the European Union and co-financed by the European Regional Development Fund。
文摘A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon interaction with 50 mJ laser pulses,the 18μm jet has a resonance amplitude of 16μm at a repetition rate of 33 Hz,while towards 100 Hz it converges to 10μm for all nozzles.A white-light interferometric system was developed to measure the liquid sheet thickness in the target chamber both in air and in vacuum,with a measurement range of 182 nm±1μm and an accuracy of±3%.The overall shape and 3D shape of the sheet follow the Hasson±Peck model in air.In vacuum versus air,the sheet gradually loses 10%of its thickness,so the thinnest sheet achieved was below 200 nm at a vacuum level of 10±4mbar,and remained stable for several hours of operation.