Two new A-D-A porphyrin derivatives,denoted as XLP-I and XLP-II,were prepared through extending theπ-conjugation of thienothiophene-porphyrin center with phenylethynyl bridges and electron-deficient ethylrhodanine te...Two new A-D-A porphyrin derivatives,denoted as XLP-I and XLP-II,were prepared through extending theπ-conjugation of thienothiophene-porphyrin center with phenylethynyl bridges and electron-deficient ethylrhodanine terminal units,and varying the structures of alkyl chain(linear vs branched)on peripheral thienothiophene substitutions of porphyrin rings.Both molecules show strong absorption in UV–visible–near-infrared region,good thermal stability,suitable energy levels,and ordered molecular packing in solid state.In organic solar cells,PC71BM was used as electron acceptor,and porphyrin small molecules were used as electron donors.The device based on XLP-I exhibits a power conversion efficiency(PCE)of 8.30%,an open circuit voltage(Voc)of 0.894 eV,and a fill factor(FF)of 62.1%.In contrast,the device based on XLP-II presents an inferior performance with a PCE of 3.14%,a Voc of 0.847 eV,and a FF of 49.3%.The better performance of XLP-I based device is mainly attributed to its optimized film morphology,excellent absorption,and well-balanced charge transport properties.展开更多
A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph-...A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph- enylphosphonium solution strengthened the conclusion.展开更多
Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified ...Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT-(CH2)nCH=NH. The electronic structures of the isolated molecules(thiol-ended PBTDT-(CH2)nCH=N) have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducing alkyl chain. The N3 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 878, which is 80 times more than that of the molecular junction based on the original N molecular junction. The current-voltage(I-V) curves of all the sandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.展开更多
Molecules bearing separateπ-electron donor(D)and acceptor(A)groups that undergo face-to-face D/A interactions have been utilized to develop thermally activated delayed fluorescence(TADF)materials.Theseπ-stacked D/A ...Molecules bearing separateπ-electron donor(D)and acceptor(A)groups that undergo face-to-face D/A interactions have been utilized to develop thermally activated delayed fluorescence(TADF)materials.Theseπ-stacked D/A architectures are constructed on various scaffolds,which have either a long D/A distance or permitted conrotatory motion.Here,we develop a novel spiro-based scaffold with a short D/A distance and restricted circumvolution motions because of both the rigid spiro-scaffold and large rotation hindrance between the nearly coplanar D and A.We append different alkyl chains,which can modulate charge transfer and luminescence properties,at the nitrogen of the D moiety to develop four TADF molecules,which can modulate chargetransfer and luminescence properties.Because of the introduction of the solubilized alkyl chain,these molecules were used to fabricate solutionprocessed devices,among which a maximum external quantum efficiency of 18.9%was realized.By modulating interactions between the D/A building blocks,these TADF constructs exemplify that the alkyl side chains of TADF molecules,which used to be considered as solubilizing units,have vital impact on the optoelectronic properties and thus offer a new route to the design of solution-processable TADF emitters.展开更多
The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were u...The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were used to explore the electronic structure of Au(111)-ILs interface.Computations show that the alkyl chain length and anions play a significant role in designing Au(111)-ILs interfacial structure.On the one hand,the stability of interface and adsorption energy tend to be enhanced as the alkyl chain length increases.It attributes to the methylene group of alkyl chain which could easily anchor on the gold interface.On the other hand,the difference in anions makes the adsorption behavior quite different.The adsorption energy follows the order:[C_(n)mim][Br]>[C_(n)mim][Cl]>[Cnmim][TFSA]>[C_(n)mim][OAc]>[C_(n)mim][PF6]>[C_(n)mim][BF_(4)].The nonfluorinated ILs(containing Br,Cl,and O atoms of anions)always have a drastic charge transfer among gold-ILs interface.However,the larger van der Waals(vdWs)volumes of the fluorinated anions have a more diffused electron density which lead to the relatively weak interaction.To sum up,a detailed and systematic investigation of the variation of anions and alkyl chain length of ILs which will affect the interfacial structure is fully studied.The above study could be helpful to understand electrode-electrolyte microscopic interface and design of functional materials for energy storage.展开更多
The physical environment plays a critical role in modulating stem cell differentiation into specific lineages. In this study, we designed and synthesized a series of low-molecular-weight gels (LMWGs) with different ...The physical environment plays a critical role in modulating stem cell differentiation into specific lineages. In this study, we designed and synthesized a series of low-molecular-weight gels (LMWGs) with different moduli based on phenylboronic acid derivatives. The moduli of the LMWGs were readily tuned by varying the alkyl chain without any chemical crosslinker. The cell responses to the gels were evaluated with mesenchymal stem cell (MSCs), in respect of cell morphology, proliferation and differentiation. The prepared gels were non-toxic to MSCs, suggesting good biocompatibility. The hydrogel stiffness exerted a striking modulation effect on MSC fate decisions, where MSCs were inclined to differentiate into osteoblasts in stiff LMWGs and into chondrocytes in soft LMWGs. The pivotal elastic modulus of the LMWGs to drive MSC differentiation into osteoblastic lineage and chondrocytic lineage were approximately 20 kPa - 40 kPa and 1 kPa - 10 kPa, respectively. Overall, our results demonstrated that the modification ofhydrogel stiffness via tuning the alkyl chain was a simple but effective approach to regulate MSC differentiation into specific lineage, which might have important implications in the design of LMWGs for tissue engineering applications.展开更多
Understanding the nature of hydrophobicity has fundamental importance in environmental applications.Using spherical silica nanoparticles(diameter=369±7 nm)as the model material,the current study investigates the ...Understanding the nature of hydrophobicity has fundamental importance in environmental applications.Using spherical silica nanoparticles(diameter=369±7 nm)as the model material,the current study investigates the relationship between the alkyl chain network and hydrophobicity.Two alkyl silanes with different chain length(triethoxymethylsilane(C1)vs.trimethoxy(octyl)silane(C8))were utilised separately for the functionalisation of the nanoparticles.Water contact angle and inverse gas chromatography results show that the alkyl chain length is essential for controlling hydrophobicity,as the octyl-functionalised nanoparticles were highly hydrophobic(water contact angle=150.6°±6.6°),whereas the methyl-functionalised nanoparticles were hydrophilic(i.e.,water contact angle=0°,similar to the pristine nanoparticles).The homogeneity of the octyl-chain network also has a significant effect on hydrophobicity,as the water contact angle was reduced significantly from 148.4°±3.5°to 30.5°±1.0°with a methyl-/octyl-silane mixture(ratio=160:40µL·g^(–1) nanoparticles).展开更多
Supramolecular chemistry has received considerable attention in host-guest recognition.The structureresponse relationship of host-guest recognition system is a meaningful issue.Herein,a series of tripodal nitrogen mus...Supramolecular chemistry has received considerable attention in host-guest recognition.The structureresponse relationship of host-guest recognition system is a meaningful issue.Herein,a series of tripodal nitrogen mustard derivatives(TMs)have been developed in this paper.By rationally design the intramolecular alkyl chain lengths of host,the host-guest binding model have been successfully tuned,which underwent a transformation fromπ-πto multiple hydrogen bonds.This process enhances the host-guest binding force and recognition efficiency.展开更多
With the generation of Y6,organic solar cells have reached remarkable achievement of over 19%efficiency.Alkyl chain is of importance to modulate intermolecular stacking and possibly enhance optoelectronic properties o...With the generation of Y6,organic solar cells have reached remarkable achievement of over 19%efficiency.Alkyl chain is of importance to modulate intermolecular stacking and possibly enhance optoelectronic properties of small molecule acceptors(SMAs).Three alkyl chains of 2-ethylhexyl,2-butylocyl and 3-ethylheptyl were selected to obtain G6-EH,G6-BO and G6-EHep molecules,respectively.Compared to G6-EH and G6-BO,G6-EHep was found inducing unfavourable large domain size.Furthermore,we discover that 2-butyloctyl effectively inhibits monomolecular and bimolecular recombination,improves molecular packing,generates more balanced carrier mobility and enhances exciton dissociation.The SMA with 2-butyloctyl alkyl chains(G6-BO)shows the best electrical and morphological characteristics,achieving a higher power conversion efficiency(PCE)of 17.06%,with an open circuit voltage of 0.912 V,a short-circuit current of 24.22 m A cm-2and a fill factor of 77.25%.Finally,using the ternary strategy by incorporating the G6-BO acceptor into PM6:BTP-e C9,we achieved a higher PCE of18.13%with enhanced electron transport.展开更多
In small-molecule organic solar cells(SM-OSCs),it remains a big challenge to obtain favorable bulk heterojunction morphology by donor material design.Herein,we design and synthesize three small-molecule donors BPF3T-C...In small-molecule organic solar cells(SM-OSCs),it remains a big challenge to obtain favorable bulk heterojunction morphology by donor material design.Herein,we design and synthesize three small-molecule donors BPF3T-C4,BPF3T-C6 and BPF3T-C8,with different terminal alkyl chains.Although they possess similar absorption profiles and molecular energy levels,their crystallinity gradually decreases with the chain length of the terminal alkyl chains.After blending with an electron acceptor of BO-4Cl,the crystallinity is suppressed and the packing orientations of these donors changed from edge-on to face-on.Simultaneously,the crystallinity of BO-4Cl is gradually weakened with the chain length of the terminal alkyl chain of donor materials.Finally,The BPF3T-C6 with moderate crystallinity exhibits the best phase-separation morphology among these blend films.As a result,the BPF3T-C6:BO-4Cl-based SM-OSC shows an impressive power conversion efficiency of 15.1%.展开更多
By intelligently utilizing the odd-even effect existing in the melting points of alkanes as presented in the basic textbook of Organic Chemistry, different alkoxy groups were introduced to modify the structure of comm...By intelligently utilizing the odd-even effect existing in the melting points of alkanes as presented in the basic textbook of Organic Chemistry, different alkoxy groups were introduced to modify the structure of commercial Spiro-OMeTAD to give new Spiro derivatives of Spiro-OEtTAD, Spiro-OPrTAD, Spiro-OiPrTAD and Spiro-OBuTAD, with the aim to adjust the molecular packing status in perovskite solar cells as hole transporting compounds. Excitedly, with the introduction of ethoxy groups instead of the methoxy ones in Spiro-OMeTAD, Spiro-OEtTAD-based perovskite solar cells demonstrated the highest device performance of 20.16%, higher than that of Spiro-OMeTAD(18.64%).展开更多
For bulk-heterojunction organic solar cells, the morphology of the blend films highly influence the exciton dissociation and charge transport process. In this work, two novel A-π-D-π-A(A represents the acceptor unit...For bulk-heterojunction organic solar cells, the morphology of the blend films highly influence the exciton dissociation and charge transport process. In this work, two novel A-π-D-π-A(A represents the acceptor unit and D represents the donor unit) backbone structure small molecular electron donors based on two dimensional conjugated naphtho[1,2-b:5,6-b']dithiophene(NDT) with different end alkyl chains, named as NDT-3T-EH and NDT-3T-O, have been designed and synthesized. The photovoltaic property of NDT-3T-O-based device is better than that of the NDT-3T-EH and the best efficiency reaches 7.06%, and the photovoltaic property of NDT-3T-EH reaches 6.11%. The difference in the performance should be attributed to the different morphology and phase separation resulted from the different crystallinity and aggregation ability of two donors. The results demonstrate that the optimized end alkyl chains can be used to design A-π-D-π-A backbone structure small molecular electron donors for smallmolecule organic solar cells.展开更多
Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltra...Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.展开更多
Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the di...Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the distribution and sources of the diols in eastern China marginal seas(CMS),which are areas of important organic carbon sink.Here the contents of C_(30) and C_(32)1,15-diols were analyzed in 181 surface sediments from eastern CMS.The similar distribution pattern and strong linear correlation between C_(30) and C_(32) diols indicated that they had similar biological source,with a dominance of C_(30) diol.Their contents ranged from 7-2726 ng g^(-1) for C_(30) diol and 5-669 ng g^(-1) for C_(32) diol,and both showed higher values mainly in the mud area of the Yellow Sea,while the TOC normalized contents showed a more obvious seaward increasing trend.The similar distribution pattern and significant positive correlation between diols and the other marine biomarkers(brassicasterol,dinosterol,C_(37) alkenones) indicated C_(30) and C_(32) diols in eastern CMS were mainly from marine algae.This conclusion was also supported by principal component analysis(PCA).Our results also showed that sediment diol contents were generally related to marine productivity,suggesting that diols could be applied for marine productivity reconstruction in eastern CMS.展开更多
Spherical polystyrene‐supported ammonium salts containing different linking chains between the support and ammonium groups were prepared as efficient and easily reusable heterogeneous catalysts for the cycloadditions...Spherical polystyrene‐supported ammonium salts containing different linking chains between the support and ammonium groups were prepared as efficient and easily reusable heterogeneous catalysts for the cycloadditions of CO2and epoxides.The effects of the length of the linking chains and a hydroxyl group pendent on the linking chain on the catalytic performance of ionic liquid immobilized catalysts and their mechanisms were studied through experiments and density functional theory calculations.It was found that,compared with a short linking chain,a long chain can make the halogen anion more negative and provide a larger contact area of the catalysts with the reactants,thus enhancing the reaction kinetics.The hydroxyl group can stretch the C-O bonds of the epoxides,promoting the reaction thermodynamics.As a result,for the cycloaddition of propylene oxide,the yield of propylene carbonate is much higher for the catalyst with a long linking chain(yield:91.4%)compared with the yield for that with a short chain(yield:70.9%),and is further increased in the presence of pendent hydroxyl groups(yield:98.5%).The catalyst also shows a high catalytic activity even at mild temperature and good reusability(yield:≥96%for10cycles),and the selectivity is always above99%.展开更多
The cationic polymerizations of 1, 3-pentadiene were initiated by AlCl_3 in n-hexaneat 30℃ in the presence of alkyl halides, i.e., tert-butyl chloride, tert-butyl bromide andisobutyl chloride. The effects of these ha...The cationic polymerizations of 1, 3-pentadiene were initiated by AlCl_3 in n-hexaneat 30℃ in the presence of alkyl halides, i.e., tert-butyl chloride, tert-butyl bromide andisobutyl chloride. The effects of these halides on the polymer yield, molecular weight,crosslinking reaction, cyclization and polymer microstructure, have been investigated. Twomain side reactions, crosslinking and cyclization, were suppressed and reduced by theaddition of the halides. The proportion of 1, 4 units of polymer chains was increasedby the presence of the halides, which reduced the polymer yield and the molecular weightof polymers.展开更多
基金the national key R&D program for international collaboration(No.2021YFE0191500)the National Natural Science Foundation of China(No.51473053)+3 种基金the Natural Science Foundation of Hunan Province(No.2019JJ50603)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee(No.KQTD2015033110182370)the Fundamental Research Project funding from Shenzhen Science and Technology Innovation Committee(No.JCYJ 20190809150213448).X.Zhu thanks the financial support from Hong Kong Research Grants Council(HKBU 12304320).
文摘Two new A-D-A porphyrin derivatives,denoted as XLP-I and XLP-II,were prepared through extending theπ-conjugation of thienothiophene-porphyrin center with phenylethynyl bridges and electron-deficient ethylrhodanine terminal units,and varying the structures of alkyl chain(linear vs branched)on peripheral thienothiophene substitutions of porphyrin rings.Both molecules show strong absorption in UV–visible–near-infrared region,good thermal stability,suitable energy levels,and ordered molecular packing in solid state.In organic solar cells,PC71BM was used as electron acceptor,and porphyrin small molecules were used as electron donors.The device based on XLP-I exhibits a power conversion efficiency(PCE)of 8.30%,an open circuit voltage(Voc)of 0.894 eV,and a fill factor(FF)of 62.1%.In contrast,the device based on XLP-II presents an inferior performance with a PCE of 3.14%,a Voc of 0.847 eV,and a FF of 49.3%.The better performance of XLP-I based device is mainly attributed to its optimized film morphology,excellent absorption,and well-balanced charge transport properties.
文摘A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph- enylphosphonium solution strengthened the conclusion.
基金supported by the National Natural Science Foundation of China(21401023)
文摘Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT-(CH2)nCH=NH. The electronic structures of the isolated molecules(thiol-ended PBTDT-(CH2)nCH=N) have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducing alkyl chain. The N3 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 878, which is 80 times more than that of the molecular junction based on the original N molecular junction. The current-voltage(I-V) curves of all the sandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.
基金This project was also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology and by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the 111 Project.G.X.acknowledges the fundamental Research Funds for the Central Universities of China(no.2042019kf0234).
文摘Molecules bearing separateπ-electron donor(D)and acceptor(A)groups that undergo face-to-face D/A interactions have been utilized to develop thermally activated delayed fluorescence(TADF)materials.Theseπ-stacked D/A architectures are constructed on various scaffolds,which have either a long D/A distance or permitted conrotatory motion.Here,we develop a novel spiro-based scaffold with a short D/A distance and restricted circumvolution motions because of both the rigid spiro-scaffold and large rotation hindrance between the nearly coplanar D and A.We append different alkyl chains,which can modulate charge transfer and luminescence properties,at the nitrogen of the D moiety to develop four TADF molecules,which can modulate chargetransfer and luminescence properties.Because of the introduction of the solubilized alkyl chain,these molecules were used to fabricate solutionprocessed devices,among which a maximum external quantum efficiency of 18.9%was realized.By modulating interactions between the D/A building blocks,these TADF constructs exemplify that the alkyl side chains of TADF molecules,which used to be considered as solubilizing units,have vital impact on the optoelectronic properties and thus offer a new route to the design of solution-processable TADF emitters.
基金supported by Taishan Scholars Program of Shandong Province(tsqn201909091)National Natural Science Foundation of China(U1704251,21722610)the High-Grade Talents Plan of Qingdao University.
文摘The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were used to explore the electronic structure of Au(111)-ILs interface.Computations show that the alkyl chain length and anions play a significant role in designing Au(111)-ILs interfacial structure.On the one hand,the stability of interface and adsorption energy tend to be enhanced as the alkyl chain length increases.It attributes to the methylene group of alkyl chain which could easily anchor on the gold interface.On the other hand,the difference in anions makes the adsorption behavior quite different.The adsorption energy follows the order:[C_(n)mim][Br]>[C_(n)mim][Cl]>[Cnmim][TFSA]>[C_(n)mim][OAc]>[C_(n)mim][PF6]>[C_(n)mim][BF_(4)].The nonfluorinated ILs(containing Br,Cl,and O atoms of anions)always have a drastic charge transfer among gold-ILs interface.However,the larger van der Waals(vdWs)volumes of the fluorinated anions have a more diffused electron density which lead to the relatively weak interaction.To sum up,a detailed and systematic investigation of the variation of anions and alkyl chain length of ILs which will affect the interfacial structure is fully studied.The above study could be helpful to understand electrode-electrolyte microscopic interface and design of functional materials for energy storage.
基金This work was supported by the Natural Science Foundation grants (Nos. 31600765 and 21672164), Natural Science Foundation of Zhejiang Province (No.LY 15B020001), Sichuan Province Miaozi Project (No. 2016RZ0032), and Chinese Postdoctoral Science Foundation (2016M062690).
文摘The physical environment plays a critical role in modulating stem cell differentiation into specific lineages. In this study, we designed and synthesized a series of low-molecular-weight gels (LMWGs) with different moduli based on phenylboronic acid derivatives. The moduli of the LMWGs were readily tuned by varying the alkyl chain without any chemical crosslinker. The cell responses to the gels were evaluated with mesenchymal stem cell (MSCs), in respect of cell morphology, proliferation and differentiation. The prepared gels were non-toxic to MSCs, suggesting good biocompatibility. The hydrogel stiffness exerted a striking modulation effect on MSC fate decisions, where MSCs were inclined to differentiate into osteoblasts in stiff LMWGs and into chondrocytes in soft LMWGs. The pivotal elastic modulus of the LMWGs to drive MSC differentiation into osteoblastic lineage and chondrocytic lineage were approximately 20 kPa - 40 kPa and 1 kPa - 10 kPa, respectively. Overall, our results demonstrated that the modification ofhydrogel stiffness via tuning the alkyl chain was a simple but effective approach to regulate MSC differentiation into specific lineage, which might have important implications in the design of LMWGs for tissue engineering applications.
基金This study is part of the SCoBiC project funded by the UK’s EPSRC(EP/N015916/1)。
文摘Understanding the nature of hydrophobicity has fundamental importance in environmental applications.Using spherical silica nanoparticles(diameter=369±7 nm)as the model material,the current study investigates the relationship between the alkyl chain network and hydrophobicity.Two alkyl silanes with different chain length(triethoxymethylsilane(C1)vs.trimethoxy(octyl)silane(C8))were utilised separately for the functionalisation of the nanoparticles.Water contact angle and inverse gas chromatography results show that the alkyl chain length is essential for controlling hydrophobicity,as the octyl-functionalised nanoparticles were highly hydrophobic(water contact angle=150.6°±6.6°),whereas the methyl-functionalised nanoparticles were hydrophilic(i.e.,water contact angle=0°,similar to the pristine nanoparticles).The homogeneity of the octyl-chain network also has a significant effect on hydrophobicity,as the water contact angle was reduced significantly from 148.4°±3.5°to 30.5°±1.0°with a methyl-/octyl-silane mixture(ratio=160:40µL·g^(–1) nanoparticles).
基金the support from the National Natural Science Foundation of China(Nos.22165027,22061039,22001214)Key R&D program of Gansu Province(No.21YF5GA066)Gansu Provincial Department of Education:Excellent Postgraduate“Innovation Star”Project(No.2021CXZX-184)。
文摘Supramolecular chemistry has received considerable attention in host-guest recognition.The structureresponse relationship of host-guest recognition system is a meaningful issue.Herein,a series of tripodal nitrogen mustard derivatives(TMs)have been developed in this paper.By rationally design the intramolecular alkyl chain lengths of host,the host-guest binding model have been successfully tuned,which underwent a transformation fromπ-πto multiple hydrogen bonds.This process enhances the host-guest binding force and recognition efficiency.
基金supported by the National Science Fund for Distinguished Young Scholars(21925506)the National Natural Science Foundation of China(U21A20331,81903743)+2 种基金the CAS Key Project of Frontier Science Research(QYZDB-SSW-SYS030)the Ningbo Key Scientific and Technological Project(2022Z117)the Ningbo Natural Science Foundation(2021J192)。
文摘With the generation of Y6,organic solar cells have reached remarkable achievement of over 19%efficiency.Alkyl chain is of importance to modulate intermolecular stacking and possibly enhance optoelectronic properties of small molecule acceptors(SMAs).Three alkyl chains of 2-ethylhexyl,2-butylocyl and 3-ethylheptyl were selected to obtain G6-EH,G6-BO and G6-EHep molecules,respectively.Compared to G6-EH and G6-BO,G6-EHep was found inducing unfavourable large domain size.Furthermore,we discover that 2-butyloctyl effectively inhibits monomolecular and bimolecular recombination,improves molecular packing,generates more balanced carrier mobility and enhances exciton dissociation.The SMA with 2-butyloctyl alkyl chains(G6-BO)shows the best electrical and morphological characteristics,achieving a higher power conversion efficiency(PCE)of 17.06%,with an open circuit voltage of 0.912 V,a short-circuit current of 24.22 m A cm-2and a fill factor of 77.25%.Finally,using the ternary strategy by incorporating the G6-BO acceptor into PM6:BTP-e C9,we achieved a higher PCE of18.13%with enhanced electron transport.
基金supported by the National Natural Science Foundation of China(21734008,21835006,51873217)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)。
文摘In small-molecule organic solar cells(SM-OSCs),it remains a big challenge to obtain favorable bulk heterojunction morphology by donor material design.Herein,we design and synthesize three small-molecule donors BPF3T-C4,BPF3T-C6 and BPF3T-C8,with different terminal alkyl chains.Although they possess similar absorption profiles and molecular energy levels,their crystallinity gradually decreases with the chain length of the terminal alkyl chains.After blending with an electron acceptor of BO-4Cl,the crystallinity is suppressed and the packing orientations of these donors changed from edge-on to face-on.Simultaneously,the crystallinity of BO-4Cl is gradually weakened with the chain length of the terminal alkyl chain of donor materials.Finally,The BPF3T-C6 with moderate crystallinity exhibits the best phase-separation morphology among these blend films.As a result,the BPF3T-C6:BO-4Cl-based SM-OSC shows an impressive power conversion efficiency of 15.1%.
基金supported by the National Natural Science Foundation of China (21734007, 51573140, 51673151, 21773045)the Natural Science Foundation of Hubei Province (2017CFA002)the Fundamental Research Funds for the Central Universities (2042017kf0247, 2042018kf0014)
文摘By intelligently utilizing the odd-even effect existing in the melting points of alkanes as presented in the basic textbook of Organic Chemistry, different alkoxy groups were introduced to modify the structure of commercial Spiro-OMeTAD to give new Spiro derivatives of Spiro-OEtTAD, Spiro-OPrTAD, Spiro-OiPrTAD and Spiro-OBuTAD, with the aim to adjust the molecular packing status in perovskite solar cells as hole transporting compounds. Excitedly, with the introduction of ethoxy groups instead of the methoxy ones in Spiro-OMeTAD, Spiro-OEtTAD-based perovskite solar cells demonstrated the highest device performance of 20.16%, higher than that of Spiro-OMeTAD(18.64%).
基金financial support from the National Natural Science Foundation of China (Nos. 21822503, 21534003, 21125420, 21603044 and 91427302)the Ministry of Science and Technology of China (Nos. 2016YFA0200704 and 2016YFF0203803)+1 种基金the Beijing Nova Program (No. Z17110001117062)the Youth Innovation Promotion Association CAS and the Chinese Academy of Sciences
文摘For bulk-heterojunction organic solar cells, the morphology of the blend films highly influence the exciton dissociation and charge transport process. In this work, two novel A-π-D-π-A(A represents the acceptor unit and D represents the donor unit) backbone structure small molecular electron donors based on two dimensional conjugated naphtho[1,2-b:5,6-b']dithiophene(NDT) with different end alkyl chains, named as NDT-3T-EH and NDT-3T-O, have been designed and synthesized. The photovoltaic property of NDT-3T-O-based device is better than that of the NDT-3T-EH and the best efficiency reaches 7.06%, and the photovoltaic property of NDT-3T-EH reaches 6.11%. The difference in the performance should be attributed to the different morphology and phase separation resulted from the different crystallinity and aggregation ability of two donors. The results demonstrate that the optimized end alkyl chains can be used to design A-π-D-π-A backbone structure small molecular electron donors for smallmolecule organic solar cells.
基金financially supported by National Key Research and Develop Program of China (2017YFA0206803)National Science Fund for Excellent Young Scholars (21722610)+2 种基金National Natural Science Foundation of China (21676277)Key Program of National Natural Science Foundation of China (91434203)CAS-SAFEA International PartnershipProgramforCreativeResearchTeams (20140491518)
文摘Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.
基金supported by the National Natural Science Foundation of China(Nos.41521064 and 41630966)
文摘Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the distribution and sources of the diols in eastern China marginal seas(CMS),which are areas of important organic carbon sink.Here the contents of C_(30) and C_(32)1,15-diols were analyzed in 181 surface sediments from eastern CMS.The similar distribution pattern and strong linear correlation between C_(30) and C_(32) diols indicated that they had similar biological source,with a dominance of C_(30) diol.Their contents ranged from 7-2726 ng g^(-1) for C_(30) diol and 5-669 ng g^(-1) for C_(32) diol,and both showed higher values mainly in the mud area of the Yellow Sea,while the TOC normalized contents showed a more obvious seaward increasing trend.The similar distribution pattern and significant positive correlation between diols and the other marine biomarkers(brassicasterol,dinosterol,C_(37) alkenones) indicated C_(30) and C_(32) diols in eastern CMS were mainly from marine algae.This conclusion was also supported by principal component analysis(PCA).Our results also showed that sediment diol contents were generally related to marine productivity,suggesting that diols could be applied for marine productivity reconstruction in eastern CMS.
基金supported by the National Natural Science Foundation of China(21406031,21476044,U1663223)the Changjiang Scholars Program(T2012049)+3 种基金the State Key Laboratory of Fine Chemicals(KF1507)Dalian High-Level Talent Support Program(2015R056)Education Department of the Liaoning Province of China(LT2015007)Fundamental Research Funds for the Central Universities(DUT16TD19)~~
文摘Spherical polystyrene‐supported ammonium salts containing different linking chains between the support and ammonium groups were prepared as efficient and easily reusable heterogeneous catalysts for the cycloadditions of CO2and epoxides.The effects of the length of the linking chains and a hydroxyl group pendent on the linking chain on the catalytic performance of ionic liquid immobilized catalysts and their mechanisms were studied through experiments and density functional theory calculations.It was found that,compared with a short linking chain,a long chain can make the halogen anion more negative and provide a larger contact area of the catalysts with the reactants,thus enhancing the reaction kinetics.The hydroxyl group can stretch the C-O bonds of the epoxides,promoting the reaction thermodynamics.As a result,for the cycloaddition of propylene oxide,the yield of propylene carbonate is much higher for the catalyst with a long linking chain(yield:91.4%)compared with the yield for that with a short chain(yield:70.9%),and is further increased in the presence of pendent hydroxyl groups(yield:98.5%).The catalyst also shows a high catalytic activity even at mild temperature and good reusability(yield:≥96%for10cycles),and the selectivity is always above99%.
文摘The cationic polymerizations of 1, 3-pentadiene were initiated by AlCl_3 in n-hexaneat 30℃ in the presence of alkyl halides, i.e., tert-butyl chloride, tert-butyl bromide andisobutyl chloride. The effects of these halides on the polymer yield, molecular weight,crosslinking reaction, cyclization and polymer microstructure, have been investigated. Twomain side reactions, crosslinking and cyclization, were suppressed and reduced by theaddition of the halides. The proportion of 1, 4 units of polymer chains was increasedby the presence of the halides, which reduced the polymer yield and the molecular weightof polymers.