The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were u...The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were used to explore the electronic structure of Au(111)-ILs interface.Computations show that the alkyl chain length and anions play a significant role in designing Au(111)-ILs interfacial structure.On the one hand,the stability of interface and adsorption energy tend to be enhanced as the alkyl chain length increases.It attributes to the methylene group of alkyl chain which could easily anchor on the gold interface.On the other hand,the difference in anions makes the adsorption behavior quite different.The adsorption energy follows the order:[C_(n)mim][Br]>[C_(n)mim][Cl]>[Cnmim][TFSA]>[C_(n)mim][OAc]>[C_(n)mim][PF6]>[C_(n)mim][BF_(4)].The nonfluorinated ILs(containing Br,Cl,and O atoms of anions)always have a drastic charge transfer among gold-ILs interface.However,the larger van der Waals(vdWs)volumes of the fluorinated anions have a more diffused electron density which lead to the relatively weak interaction.To sum up,a detailed and systematic investigation of the variation of anions and alkyl chain length of ILs which will affect the interfacial structure is fully studied.The above study could be helpful to understand electrode-electrolyte microscopic interface and design of functional materials for energy storage.展开更多
A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph-...A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph- enylphosphonium solution strengthened the conclusion.展开更多
Pure organic room-temperature phosphorescence(RTP)materials have attracted wide attention owing to their excellent luminescent properties and great potential in various applications.In this work,iminostilbene and its ...Pure organic room-temperature phosphorescence(RTP)materials have attracted wide attention owing to their excellent luminescent properties and great potential in various applications.In this work,iminostilbene and its analogues are applied to realize RTP emission by copolymerizing with acrylamide.It can be concluded that the growth of alkane chain in monomers can enhance the lifetime and photoluminescence quantum yield of RTP emission,and polymers with the larger conjugated structure of the monomer show a longer RTP emission wavelength.This work provides a series of new pure organic RTP materials and might provide new thoughts for designing more advanced and superior RTP materials.展开更多
Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alk...Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.展开更多
基金supported by Taishan Scholars Program of Shandong Province(tsqn201909091)National Natural Science Foundation of China(U1704251,21722610)the High-Grade Talents Plan of Qingdao University.
文摘The interfacial structure and adsorption mechanism of imidazolium-based ionic liquids(ILs)on Au(111)surface were investigated via first-principles calculation.Electron density analysis and Bader charge analysis were used to explore the electronic structure of Au(111)-ILs interface.Computations show that the alkyl chain length and anions play a significant role in designing Au(111)-ILs interfacial structure.On the one hand,the stability of interface and adsorption energy tend to be enhanced as the alkyl chain length increases.It attributes to the methylene group of alkyl chain which could easily anchor on the gold interface.On the other hand,the difference in anions makes the adsorption behavior quite different.The adsorption energy follows the order:[C_(n)mim][Br]>[C_(n)mim][Cl]>[Cnmim][TFSA]>[C_(n)mim][OAc]>[C_(n)mim][PF6]>[C_(n)mim][BF_(4)].The nonfluorinated ILs(containing Br,Cl,and O atoms of anions)always have a drastic charge transfer among gold-ILs interface.However,the larger van der Waals(vdWs)volumes of the fluorinated anions have a more diffused electron density which lead to the relatively weak interaction.To sum up,a detailed and systematic investigation of the variation of anions and alkyl chain length of ILs which will affect the interfacial structure is fully studied.The above study could be helpful to understand electrode-electrolyte microscopic interface and design of functional materials for energy storage.
文摘A study of the quenching of pyrene fluorescence by a series of alkyltriphenylphosphonium bromides indi- cated the coiling conformation of ionic surfactant in aqueous solution.Formation of pyrene excimer in cetyltriph- enylphosphonium solution strengthened the conclusion.
基金the financial support from the National Natural Science Foundation of China (Nos. 21788102, 22125803, 22020102006 and 21871083)Program of Shanghai Academic/Technology Research Leader (No. 20XD1421300)+2 种基金‘Shu Guang’ Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 19SG26)the Innovation Program of Shanghai Municipal Education Commission (No. 2017–01–07–00–02-E00010)the Fundamental Research Funds for the Central Universities.
文摘Pure organic room-temperature phosphorescence(RTP)materials have attracted wide attention owing to their excellent luminescent properties and great potential in various applications.In this work,iminostilbene and its analogues are applied to realize RTP emission by copolymerizing with acrylamide.It can be concluded that the growth of alkane chain in monomers can enhance the lifetime and photoluminescence quantum yield of RTP emission,and polymers with the larger conjugated structure of the monomer show a longer RTP emission wavelength.This work provides a series of new pure organic RTP materials and might provide new thoughts for designing more advanced and superior RTP materials.
基金supported by NIH R01 DE17974West China School of Stomatologya Seed Grant from Department of Endodontics,Prosthodontics and Operative Dentistry,University of Maryland
文摘Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries.