In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the...In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.展开更多
Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dyn...Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (I:)LOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1-9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks.展开更多
We present a theoretical study of an optical cavity coupled with single four-level atoms in closed loop formed via applied control lasers. The transmitted probe field from the cavity is analyzed. We show that the elec...We present a theoretical study of an optical cavity coupled with single four-level atoms in closed loop formed via applied control lasers. The transmitted probe field from the cavity is analyzed. We show that the electromagnetically induced transparency(EIT) in the cavity and the normal mode splitting will be very different with changing the closed interaction phase and the intensity of the free-space control laser. This coupled cavity-atom system presents a variational double-EIT that comes from modulating the splitting of the dark state, which means that we could realize the gradual transfer between one EIT peak and two EIT peaks by adjusting the applied control lasers, and the normal mode splitting sidebands will shift slightly by changing the free-space control laser. This means that we could control the output cavity probe field more freely and it is easer to realize optical switch controlled by more parameters. We also depict the angular dispersion of the intracavity probe field in different free-space control laser. The large phase shift(-π → π) of the reflected intracavity probe field will be very useful for optical temporal differentiation and quantum phase gate.展开更多
Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and n...Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time division demultiplexing, packet switching, all optical regenerating and so on. This thesis mainly studies various all optical switch technologies and their utilization in the fields of all optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.\; (1) A novel all optical ultrafast demultiplexing scheme using the soliton self trapping effect in birefringent fiber is proposed.\; (2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.\; (3) The performance analysis and the configuration optimization of the all optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach Zehnder Interferometer configuration.\; (4) The 8×2\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.\; (5) The NOLM switch is used to realize the all optical 3R regeneration of 2\^5 Gb/s Return to Zero signal.\; (6) The feasibility and limitation of the all optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all optical packet dropping node suitable in the networks with ring or bus configuration and an all optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all optical packet switching through combining the all optical switches and the reasonable logic decisions.展开更多
文摘In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.
基金supported by the State Key Development Program for Basic Research of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60677004 and 60702049)+1 种基金the Program for the New Century Excellent Talents in University of China (Grant No.NECT-07-0111)the Innovation Plan for Youth of Beijing University of Posts and Telecommunications
文摘Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (I:)LOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1-9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174109)
文摘We present a theoretical study of an optical cavity coupled with single four-level atoms in closed loop formed via applied control lasers. The transmitted probe field from the cavity is analyzed. We show that the electromagnetically induced transparency(EIT) in the cavity and the normal mode splitting will be very different with changing the closed interaction phase and the intensity of the free-space control laser. This coupled cavity-atom system presents a variational double-EIT that comes from modulating the splitting of the dark state, which means that we could realize the gradual transfer between one EIT peak and two EIT peaks by adjusting the applied control lasers, and the normal mode splitting sidebands will shift slightly by changing the free-space control laser. This means that we could control the output cavity probe field more freely and it is easer to realize optical switch controlled by more parameters. We also depict the angular dispersion of the intracavity probe field in different free-space control laser. The large phase shift(-π → π) of the reflected intracavity probe field will be very useful for optical temporal differentiation and quantum phase gate.
文摘Optical time division multiplexing (OTDM) is one of the promisinig ways for the future high speed optical fiber communication networks. All optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time division demultiplexing, packet switching, all optical regenerating and so on. This thesis mainly studies various all optical switch technologies and their utilization in the fields of all optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.\; (1) A novel all optical ultrafast demultiplexing scheme using the soliton self trapping effect in birefringent fiber is proposed.\; (2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.\; (3) The performance analysis and the configuration optimization of the all optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach Zehnder Interferometer configuration.\; (4) The 8×2\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.\; (5) The NOLM switch is used to realize the all optical 3R regeneration of 2\^5 Gb/s Return to Zero signal.\; (6) The feasibility and limitation of the all optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all optical packet dropping node suitable in the networks with ring or bus configuration and an all optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all optical packet switching through combining the all optical switches and the reasonable logic decisions.