A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock f...A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the XRZ data are evidently achieved. All- optical clock recovery from XRZ data at 10 Gb/s is successfully demonstrated with the proposed XRZ-to- PRZ converter and a mode-locked SOA fiber laser. Furthermore, XRZ-to-RZ format conversion of 10 Gb/s is realized bv using the recovered clock as the control light of terahertz optical asymmetric demultiplexer (TOAD), which further proves that the proposed clock recovery scheme is applicable.展开更多
The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the ext...The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.展开更多
An all-optical clock recovery scheme based on monolithic amplified feedback DFB laser (AFL) diode is proposed for nonreturn-to-zero (NRZ) quadrature phase shift keying (QPSK) format signals. By using a preproces...An all-optical clock recovery scheme based on monolithic amplified feedback DFB laser (AFL) diode is proposed for nonreturn-to-zero (NRZ) quadrature phase shift keying (QPSK) format signals. By using a preprocessing stage, clock recovery (CR) is successfully demonstrated for 40-Gbaud NRZ-QPSK signals based on this scheme. The dependence of the timing jitter of the recovered clock on the optical power of the injected signal is investigated. A minimum timing jitter of 362.8 fs (integrated within a frequency range from 10 Hz to 10 MHz) is obtained.展开更多
We experimentally demonstrate all-optical clock recovery for 100 Gb/s return-to-zero on-off keying signals based on a monolithic dual-mode distributed Bragg reflector (DBR) laser, which can realize both mode spacing...We experimentally demonstrate all-optical clock recovery for 100 Gb/s return-to-zero on-off keying signals based on a monolithic dual-mode distributed Bragg reflector (DBR) laser, which can realize both mode spacing and wavelength tuning. By using a coherent injection locking scheme, a 100 GHz optical clock can be recovered with a timing jitter of 530 fs, which is derived by an optical sampling oscilloscope from both the phase noise and the power fluctuation. Furthermore, for degraded injection signals with an optical signal-to-noise ratio as low as 4.1 dB and a 25 km long distance transmission, good-quality optical clocks are all successfully recovered.展开更多
A 2.5Gb/s clock and data recovery (CDR) circuit is designed and realized in TSMC's standard 0.18/μm CMOS process. The clock recovery is based on a PLL. For phase noise optimization,a dynamic phase and frequency de...A 2.5Gb/s clock and data recovery (CDR) circuit is designed and realized in TSMC's standard 0.18/μm CMOS process. The clock recovery is based on a PLL. For phase noise optimization,a dynamic phase and frequency detector (PFD) is used in the PLL. The rms jitter of the recovered 2.5GHz clock is 2.4ps and the SSB phase noise is - 111dBc/Hz at 10kHz offset. The rms jitter of the recovered 2.5Gb/s data is 3.3ps. The power consumption is 120mW.展开更多
A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency div...A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).展开更多
The design of a 2. 488 Gbit/s clock and data recovery (CDR) If for synchronous digital hierarchy (SDH) STM-16 receiver is described. Based on the injected phase-locked loop (IPLL) and D-flip flop architectures, ...The design of a 2. 488 Gbit/s clock and data recovery (CDR) If for synchronous digital hierarchy (SDH) STM-16 receiver is described. Based on the injected phase-locked loop (IPLL) and D-flip flop architectures, the CDR IC was implemented in a standard 0. 35 μan complementary metal-oxide-semiconductor (CMOS) technology. With 2^31 -1 pseudorandom bit sequences (PRBS) input, the sensitivity of data recovery circuit is less than 20 mV with 10^-12 bit error rate (BER). The recovered clock shows a root mean square (rms) jitter of 2. 8 ps and a phase noise of - 110 dBc/Hz at 100 kHz offset. The capture range of the circuit is larger than 40 MHz. With a 5 V supply, the circuit consumes 680 mW and the chip area is 1.49 mm × 1 mm.展开更多
In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows ...In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows that the output amplitude and linearity of phase interpolator is primarily related to the difference between the two input phases. A new encoding pattern is given to solve this problem. Analysis in the circuit domain was also undertaken. The simulation results show that the relation between RC time-constant and time difference of input clocks affects the linearity of the phase interpolator. To alleviate this undesired effect, two adjustable-RC buffers are added at the input of the PI. Finally,a 90nm CMOS phase interpolator,which can work in the frequency from 1GHz to 5GHz,is proposed. The power dissipation of the phase interpolator is lmW with a 1.2V power supply. Experiment results show that the phase interpolator has a monotone output phase and good linearity.展开更多
A 2 5Gb/s depletion mode GaAs MESFET clock recovery and decision circuit is described,which applies to the optical fiber communication.The circuit consists of a clock recovery circuit,including a preprocessor,phase ...A 2 5Gb/s depletion mode GaAs MESFET clock recovery and decision circuit is described,which applies to the optical fiber communication.The circuit consists of a clock recovery circuit,including a preprocessor,phase detector(PD),low pass filter(LPF) and voltage controlled oscillator(VCO) and a decision circuit,including a comparator and a latch.The SPICE simulation result confirms the high frequency 2 5GHz of the clock recovery and the high speed 2 5Gb/s of the decision circuit.The 2 5Gb/s decision circuit has proved to be able to deal with the input signal and produce a digital output signal after it being sampled by a clock signal.展开更多
In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-sta...In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-stage ring voltage-controlled oscillator (VCO) is employed to avoid an unreliable startup of a 2-stage VCO and a low oscillation frequency of a 4-stage VCO. A phase frequency detector (PFD) is used to expand the pull-in range to meet the wide tuning range of a VCO required by process-voltage-temperature (PVT) variation. SMIC 0. 18-μm CMOS technology is adopted and the core area is 170 μm ×270 μm. Measurements show that, under a 1.8 V supply voltage, it consumes only about 90 mW, and has an input sensitivity of less than 25 mV, an output single-ended swing of above 300 mV, a phase noise of - 114 dBc/Hz at 1 MHz offset and a pull-in range of 1 GHz.展开更多
To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerati...To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.展开更多
Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also propose...Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.展开更多
A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-fo...A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 90401025)Key Project of MOE (No. 105036)
文摘A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the XRZ data are evidently achieved. All- optical clock recovery from XRZ data at 10 Gb/s is successfully demonstrated with the proposed XRZ-to- PRZ converter and a mode-locked SOA fiber laser. Furthermore, XRZ-to-RZ format conversion of 10 Gb/s is realized bv using the recovered clock as the control light of terahertz optical asymmetric demultiplexer (TOAD), which further proves that the proposed clock recovery scheme is applicable.
基金Project supported by the National Natural Science Foundation of China (Grant No 60577019)
文摘The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.
基金This work was supported by the National "973" Program of China (No. 2011CB301702), in part by the National "863" Program of China (No. 2013AA014202), and the National Natural Science Foundation of China (Nos. 61201103, 61335009, 61274045, and 61205031).
文摘An all-optical clock recovery scheme based on monolithic amplified feedback DFB laser (AFL) diode is proposed for nonreturn-to-zero (NRZ) quadrature phase shift keying (QPSK) format signals. By using a preprocessing stage, clock recovery (CR) is successfully demonstrated for 40-Gbaud NRZ-QPSK signals based on this scheme. The dependence of the timing jitter of the recovered clock on the optical power of the injected signal is investigated. A minimum timing jitter of 362.8 fs (integrated within a frequency range from 10 Hz to 10 MHz) is obtained.
基金supported by the National 973 Program of China(Nos.2011CB301702 and 2011CB301703)the National Natural Science Foundation of China(Nos.61201103,61335009,and 61321063)
文摘We experimentally demonstrate all-optical clock recovery for 100 Gb/s return-to-zero on-off keying signals based on a monolithic dual-mode distributed Bragg reflector (DBR) laser, which can realize both mode spacing and wavelength tuning. By using a coherent injection locking scheme, a 100 GHz optical clock can be recovered with a timing jitter of 530 fs, which is derived by an optical sampling oscilloscope from both the phase noise and the power fluctuation. Furthermore, for degraded injection signals with an optical signal-to-noise ratio as low as 4.1 dB and a 25 km long distance transmission, good-quality optical clocks are all successfully recovered.
文摘A 2.5Gb/s clock and data recovery (CDR) circuit is designed and realized in TSMC's standard 0.18/μm CMOS process. The clock recovery is based on a PLL. For phase noise optimization,a dynamic phase and frequency detector (PFD) is used in the PLL. The rms jitter of the recovered 2.5GHz clock is 2.4ps and the SSB phase noise is - 111dBc/Hz at 10kHz offset. The rms jitter of the recovered 2.5Gb/s data is 3.3ps. The power consumption is 120mW.
文摘A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).
文摘The design of a 2. 488 Gbit/s clock and data recovery (CDR) If for synchronous digital hierarchy (SDH) STM-16 receiver is described. Based on the injected phase-locked loop (IPLL) and D-flip flop architectures, the CDR IC was implemented in a standard 0. 35 μan complementary metal-oxide-semiconductor (CMOS) technology. With 2^31 -1 pseudorandom bit sequences (PRBS) input, the sensitivity of data recovery circuit is less than 20 mV with 10^-12 bit error rate (BER). The recovered clock shows a root mean square (rms) jitter of 2. 8 ps and a phase noise of - 110 dBc/Hz at 100 kHz offset. The capture range of the circuit is larger than 40 MHz. With a 5 V supply, the circuit consumes 680 mW and the chip area is 1.49 mm × 1 mm.
文摘In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows that the output amplitude and linearity of phase interpolator is primarily related to the difference between the two input phases. A new encoding pattern is given to solve this problem. Analysis in the circuit domain was also undertaken. The simulation results show that the relation between RC time-constant and time difference of input clocks affects the linearity of the phase interpolator. To alleviate this undesired effect, two adjustable-RC buffers are added at the input of the PI. Finally,a 90nm CMOS phase interpolator,which can work in the frequency from 1GHz to 5GHz,is proposed. The power dissipation of the phase interpolator is lmW with a 1.2V power supply. Experiment results show that the phase interpolator has a monotone output phase and good linearity.
文摘A 2 5Gb/s depletion mode GaAs MESFET clock recovery and decision circuit is described,which applies to the optical fiber communication.The circuit consists of a clock recovery circuit,including a preprocessor,phase detector(PD),low pass filter(LPF) and voltage controlled oscillator(VCO) and a decision circuit,including a comparator and a latch.The SPICE simulation result confirms the high frequency 2 5GHz of the clock recovery and the high speed 2 5Gb/s of the decision circuit.The 2 5Gb/s decision circuit has proved to be able to deal with the input signal and produce a digital output signal after it being sampled by a clock signal.
基金The National High Technology Research and Development Program of China (863 Program)(No. 2007AA01Z2a5)the National Natural Science Foundation of China (No. 60806027,61076073)Specialized Research Fund for the Doctoral Program of Higher Education (No.20090092120012)
文摘In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-stage ring voltage-controlled oscillator (VCO) is employed to avoid an unreliable startup of a 2-stage VCO and a low oscillation frequency of a 4-stage VCO. A phase frequency detector (PFD) is used to expand the pull-in range to meet the wide tuning range of a VCO required by process-voltage-temperature (PVT) variation. SMIC 0. 18-μm CMOS technology is adopted and the core area is 170 μm ×270 μm. Measurements show that, under a 1.8 V supply voltage, it consumes only about 90 mW, and has an input sensitivity of less than 25 mV, an output single-ended swing of above 300 mV, a phase noise of - 114 dBc/Hz at 1 MHz offset and a pull-in range of 1 GHz.
文摘To improve the performance of composite pseudo-noise (PN) code clock recovery in a regenerative PN ranging system at a low symbol signal-to-noise ratio (SNR), a novel chip tracking loop (CTL) used for regenerative PN ranging clock recovery is adopted. The CTL is a modified data transition tracking loop (DTTL). The difference between them is that the Q channel output of the CTL is directly multiplied by a clock component, while that of the DTTL is multiplied by the Ⅰ channel transition detector output. Under the condition of a quasi-squareware PN ranging code, the tracking ( mean square timing jitter) performance of the CTL is analyzed. The tracking performances of the CTL and the DTTL, are compared over a wide range of symbol SNRs. The result shows that the CTL and the DTTL have the same performance at a large symbol SNR, while at a low symbol SNR, the former offers a noticeable enhancement.
文摘Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.
基金supported by National Natural Science Foundation of China under Grant 62174132the Fundamental Research Funds for Central Universities under Grant xzy022022060.
文摘A 28/56 Gb/s NRZ/PAM-4 dual-mode transceiver(TRx)designed in a 28-nm complementary metal-oxide-semiconduc-tor(CMOS)process is presented in this article.A voltage-mode(VM)driver featuring a 4-tap reconfigurable feed-forward equal-izer(FFE)is employed in the quarter-rate transmitter(TX).The half-rate receiver(RX)incorporates a continuous-time linear equal-izer(CTLE),a 3-stage high-speed slicer with multi-clock-phase sampling,and a clock and data recovery(CDR).The experimen-tal results show that the TRx operates at a maximum speed of 56 Gb/s with chip-on board(COB)assembly.The 28 Gb/s NRZ eye diagram shows a far-end vertical eye opening of 210 mV with an output amplitude of 351 mV single-ended and the 56 Gb/s PAM-4 eye diagram exhibits far-end eye opening of 33 mV(upper-eye),31 mV(mid-eye),and 28 mV(lower-eye)with an output amplitude of 353 mV single-ended.The recovered 14 GHz clock from the RX exhibits random jitter(RJ)of 469 fs and deterministic jitter(DJ)of 8.76 ps.The 875 Mb/s de-multiplexed data features 593 ps horizontal eye opening with 32.02 ps RJ,at bit-error rate(BER)of 10-5(0.53 UI).The power dissipation of TX and RX are 125 and 181.4 mW,respectively,from a 0.9-V sup-ply.