We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbiumdoped fiber amplifiers(Bi-EDFAs),no spontaneous lasing even with high gain,in longdistance fiber-optic time ...We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbiumdoped fiber amplifiers(Bi-EDFAs),no spontaneous lasing even with high gain,in longdistance fiber-optic time and frequency(T/F)synchronization system.It is found that the Rayleigh scattering noise can be suppressed due to the high isolation design,but the amplified spontaneous emission(ASE)noise generated by the high isolation Bi-EDFA and the bidirectional asymmetry of the transmission link caused by the high isolation Bi-EDFA will deteriorate the stability of the system.The calculated results show that under the influence of ASE noise,the frequency instability of a 1200 km system composed of 15 high isolation Bi-EDFAs is 1.773×10^(-13)/1 s.And the instability caused by asymmetry is 2.6064×10^(-16)/30000–35000 s if the total asymmetric length of the bidirectional link length is 30 m.The intensity noises originating from the laser and detector,the transfer delay fluctuations caused by the variation in ambient temperature and the jitter in laser output wavelength are also studied.The experiment composed of three high isolation Bi-EDFAs is done to confirm the theoretical analysis.In summary,the paper shows that the short-term instability of the T/F synchronization system composed of high isolation Bi-EDFAs is limited by the accumulation of ASE noise of amplifiers and the laser frequency drift,while the long-term instability is limited by the periodic variation in ambient temperature and the asymmetry of the amplifiers.The research results are useful for pointing out the direction to improve the stability of the fiber-optic T/F synchronization system.展开更多
In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the ...In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the sensitivity function g(t) to the frequency fluctuation of the interrogating field with Nπ-pulse (N is odd) is derived. According to the measured phase noise of the 40.5-GHz microwave synthesizer, the Dick-effect limited Allan deviation of our 199Hg+ trapped-ion clock is worked out. The results indicate that the limited Allan deviations are about 1.75 ×10-13/√τ and 3.03 ×10-13/√τ respectively in the linear ion trap and in the two-segment extended linear ion trap under our present experimental parameters.展开更多
An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) la...An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.展开更多
Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light sourc...Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light source, light path and pyroelectric detector), a driving circuit of the sensor, an ARM11 embedded Win CE system, and a Lab VIEW-based data-processing platform. Experiments were carried out with prepared CH_4 samples to investigate the sensing performance. The relative detection error is less than 9.14% within the measuring range of 0—7×10^(-2). For a CH_4 sample with concentration of 0(i.e., pure nitrogen), the measured concentration fluctuation range is-1.2×10^(-5)—+2×10^(-5). An Allan deviation analysis on the gas sample with concentration of 0 indicates that the 1σ limit of detection(LoD) of the device is 4.8×10^(-6) with an average time of 1 s. Experiments were performed on three CH_4 samples with different concentrations to test the response time, which is validated to be less than 20 s. Due to the small size of the ARM11 embedded system and the powerful data processing capability of the Lab VIEW platform, the proposed portable and miniaturized CH_4 sensor shows a good application prospect in mining operations and some other industrial fields.展开更多
We present a laser frequency locking system based on acousto-optic modulation transfer spectroscopy(AOMTS). Theoretical and experimental investigations are carried out to optimize the locking performance mainly from...We present a laser frequency locking system based on acousto-optic modulation transfer spectroscopy(AOMTS). Theoretical and experimental investigations are carried out to optimize the locking performance mainly from the view of the modulation frequency and index for the specific scheme of AOMTS. An FWHM linewidth of 63 kHz is achieved and the frequency stability in terms of Allan standard deviation reaches1.4 × 10^(-12) at 30 s. The frequency shifting capacity is validated throughout the acousto-optic modulator bandwidth while the laser is kept locked. This work offers a different but efficient choice for applications calling for both stabilized and tunable laser frequencies.展开更多
By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A la...By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61701040,61771062,and 61871044)the Youth Program of the National Natural Science Foundation of China(Grant No.61901046)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.2019XD-A18and 2019PTB-004)the Youth Research and Innovation Program of BUPT(Grant No.2017RC13)。
文摘We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbiumdoped fiber amplifiers(Bi-EDFAs),no spontaneous lasing even with high gain,in longdistance fiber-optic time and frequency(T/F)synchronization system.It is found that the Rayleigh scattering noise can be suppressed due to the high isolation design,but the amplified spontaneous emission(ASE)noise generated by the high isolation Bi-EDFA and the bidirectional asymmetry of the transmission link caused by the high isolation Bi-EDFA will deteriorate the stability of the system.The calculated results show that under the influence of ASE noise,the frequency instability of a 1200 km system composed of 15 high isolation Bi-EDFAs is 1.773×10^(-13)/1 s.And the instability caused by asymmetry is 2.6064×10^(-16)/30000–35000 s if the total asymmetric length of the bidirectional link length is 30 m.The intensity noises originating from the laser and detector,the transfer delay fluctuations caused by the variation in ambient temperature and the jitter in laser output wavelength are also studied.The experiment composed of three high isolation Bi-EDFAs is done to confirm the theoretical analysis.In summary,the paper shows that the short-term instability of the T/F synchronization system composed of high isolation Bi-EDFAs is limited by the accumulation of ASE noise of amplifiers and the laser frequency drift,while the long-term instability is limited by the periodic variation in ambient temperature and the asymmetry of the amplifiers.The research results are useful for pointing out the direction to improve the stability of the fiber-optic T/F synchronization system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074248 and 11474320)
文摘In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the sensitivity function g(t) to the frequency fluctuation of the interrogating field with Nπ-pulse (N is odd) is derived. According to the measured phase noise of the 40.5-GHz microwave synthesizer, the Dick-effect limited Allan deviation of our 199Hg+ trapped-ion clock is worked out. The results indicate that the limited Allan deviations are about 1.75 ×10-13/√τ and 3.03 ×10-13/√τ respectively in the linear ion trap and in the two-segment extended linear ion trap under our present experimental parameters.
基金supported by the National Natural Science Foundation of China(Nos.60808020 and 61078041)the Natural Science Foundation of Tianjin(Nos.16JCQNJC02100,15JCYBJC51700 and 16JCYBJC15400)the National Science and Technology Support(No.2014BAH03F01)
文摘An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
基金supported by the National Natural Science Foundation of China(Nos.61627823,61307124 and 11404129)the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)+1 种基金the Changchun Municipal Science and Technology Bureau(No.14KG022)the State Key Laboratory of Integrated Optoelectronics of Jilin University(No.IOSKL2012ZZ12)
文摘Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light source, light path and pyroelectric detector), a driving circuit of the sensor, an ARM11 embedded Win CE system, and a Lab VIEW-based data-processing platform. Experiments were carried out with prepared CH_4 samples to investigate the sensing performance. The relative detection error is less than 9.14% within the measuring range of 0—7×10^(-2). For a CH_4 sample with concentration of 0(i.e., pure nitrogen), the measured concentration fluctuation range is-1.2×10^(-5)—+2×10^(-5). An Allan deviation analysis on the gas sample with concentration of 0 indicates that the 1σ limit of detection(LoD) of the device is 4.8×10^(-6) with an average time of 1 s. Experiments were performed on three CH_4 samples with different concentrations to test the response time, which is validated to be less than 20 s. Due to the small size of the ARM11 embedded system and the powerful data processing capability of the Lab VIEW platform, the proposed portable and miniaturized CH_4 sensor shows a good application prospect in mining operations and some other industrial fields.
基金supported by the National Natural Science Foundation(No.51275523)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20134307110009)of China
文摘We present a laser frequency locking system based on acousto-optic modulation transfer spectroscopy(AOMTS). Theoretical and experimental investigations are carried out to optimize the locking performance mainly from the view of the modulation frequency and index for the specific scheme of AOMTS. An FWHM linewidth of 63 kHz is achieved and the frequency stability in terms of Allan standard deviation reaches1.4 × 10^(-12) at 30 s. The frequency shifting capacity is validated throughout the acousto-optic modulator bandwidth while the laser is kept locked. This work offers a different but efficient choice for applications calling for both stabilized and tunable laser frequencies.
基金supported by the National Key Technology R&D Program of China(Nos.2013BAK06B04 and 2014BAD08B03)the National Natural Science Foundation of China(Nos.61307124 and 11404129)+3 种基金the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)the Changchun Municipal Science and Technology Bureau(Nos.11GH01 and 14KG022)the State Key Laboratory on Integrated OptoelectronicsJilin University(No.IOSKL2012ZZ12)
文摘By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.