Since the last century, various predator-prey systems have garnered widespread attention. In particular, the predator-prey systems have sparked significant interest among applied mathematicians and ecologists. From th...Since the last century, various predator-prey systems have garnered widespread attention. In particular, the predator-prey systems have sparked significant interest among applied mathematicians and ecologists. From the perspectives of both mathematics and biology, a predator-prey system with the Allee effect and featuring the Bazykin functional response has been established. For this model, analyses have been conducted on its boundedness, the properties of its solutions, the existence of equilibrium points, as well as its local stability and Hopf bifurcations.展开更多
Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey ...Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey dynamics affected by both delays and the Allee effect. We analyze the consequences of delays in different feedback mechanisms. The existence of a Hopf bifurcation is studied, and we calculate the value of the delay that leads to the Hopf bifurcation. Furthermore, applying the normal form theory and a center manifold theorem, we consider the direction and stability of the Hopf bifurcation. Finally, we present numerical experiments that validate our theoretical analysis. Interestingly, depending on the chosen delay mechanism, we find that delays are not necessarily destabilizing. The Allee effect generally increases the stability of the equilibrium, and when the Allee effect involves a delay term, the stabilization effect is more pronounced.展开更多
In this paper, an algae-fish harvested model with Allee effect was established to further explore the dynamic evolution mechanism under the influence of key factors. Mathematical theoretical work not only investigated...In this paper, an algae-fish harvested model with Allee effect was established to further explore the dynamic evolution mechanism under the influence of key factors. Mathematical theoretical work not only investigated the existence and stability of all possible equilibrium points, but also probed into the occurrence of transcritical and Hopf bifurcation. The numerical simulation works verified the effectiveness of the theoretical derivation results and displayed rich bifurcation dynamical behaviors, which showed that Allee effect and harvest have played a vital role in the dynamic relationship between algae and fish. In summary, it was expected that these research results would be beneficial for promoting the study of bifurcation dynamics in aquatic ecosystems.展开更多
In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Alle...In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Allee effect and is inhomogeneous. We use variational methods to prove that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate conditions. We also prove some nonexistence results.展开更多
In this paper, based on the dynamic relationship between algae and protozoa, an aquatic ecological model with Allee effect was established to investigate how some ecological environment factors affect coexistence mode...In this paper, based on the dynamic relationship between algae and protozoa, an aquatic ecological model with Allee effect was established to investigate how some ecological environment factors affect coexistence mode of algae and protozoa. Mathematical derivation works mainly gave some key conditions to ensure the existence and stability of all possible equilibrium points, and to induce the occurrence of transcritical bifurcation and Hopf bifurcation. The numerical simulation works mainly revealed ecological relationship change characteristics of algae and protozoa with the help of bifurcation dynamics evolution process. Furthermore, it was also worth emphasizing that Allee effect had a strong influence on the dynamic relationship between algae and protozoa. In a word, it was hoped that the research results could provide some theoretical support for algal bloom control, and also be conducive to the rapid development of aquatic ecological models.展开更多
The aim of this paper is to investigate the dynamic behaviors of fractional-order logistic model with Allee effects in Caputo-Fabrizio sense.First of all,we apply the two-step Adams-Bashforth scheme to discretize the ...The aim of this paper is to investigate the dynamic behaviors of fractional-order logistic model with Allee effects in Caputo-Fabrizio sense.First of all,we apply the two-step Adams-Bashforth scheme to discretize the fractional-order logistic differential equation and obtain the two-dimensional discrete system.The parametric conditions for local asymptotic stability of equilibrium points are obtained by Schur-Chon criterion.Moreover,we discuss the existence and direction for Neimark-Sacker bifurcations with the help of center manifold theorem and bifurcation theory.Numerical simulations are provided to illustrate theoretical discussion.It is observed that Allee effect plays an important role in stability analysis.Strong Allee effect in population enhances the stability of the coexisting steady state.In additional,the effect of fractional-order derivative on dynamic behavior of the system is also investigated.展开更多
In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species accor...In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species according to their availability.So,prey switching of predators mainly helps to increase the overall growth rate of a predator species.In this work,we have proposed a two prey-one predator system where the predator population adopts switching behavior between two prey species at the time of consumption.Both the prey population exhibit a strong Allee effect and the predator population is considered to be a generalist one.The proposed system is biologically well-defined as the system variables are positive and do not increase abruptly with time.The local stability analysis reveals that all the predator-free equilibria are saddle points whereas the prey-free equilibrium is always stable.The intrinsic growth rates of prey,the strong Allee parameters,and the prey refuge parameters are chosen to be the controlling parameters here.The numerical simulation reveals that in absence of one prey,the other prey refuge parameter can change the system dynamics by forming a stable or unstable limit cycle.Moreover,a situation of bi-stability,tri-stability,or even multi-stability of equilibrium points occurs in this system.As in presence of the switching effect,the predator chooses prey according to their abundance,so,increasing refuge in one prey population decreases the count of the second prey population.It is also observed that the count of predator population reaches a comparatively higher value even if they get one prey population at its fullest quantity and only a portion of other prey species.So,in the scarcity of one prey species,switching to the other prey is beneficial for the growth of the predator population.展开更多
In this work,we study a predator-prey model of Gause type,in which the prey growth rate is subject to an Allee effect and the action of the predator over the prey is determined by a generalized hyperbolic-type functio...In this work,we study a predator-prey model of Gause type,in which the prey growth rate is subject to an Allee effect and the action of the predator over the prey is determined by a generalized hyperbolic-type functional response,which is neither differentiable nor locally Lipschitz at the predator axis.This kind of functional response is an extension of the so-called square root functional response,used to model systems in which the prey have a strong herd structure.We study the behavior of the solutions in the first quadrant and the existence of limit cycles.We prove that,for a wide choice of parameters,the solutions arrive at the predator axis in finite time.We also characterize the existence of an equilibrium point and,when it exists,we provide necessary and sufficient conditions for it to be a center-type equilibrium.In fact,we show that the set of parameters that yield a center-type equilibrium,is the graph of a function with an open domain.We also prove that any center-type equilibrium is stable and it always possesses a supercritical Hopf bifurcation.In particular,we guarantee the existence of a unique limit cycle,for small perturbations of the system.展开更多
In this paper, we are concerned with a predator-prey model with Holling type Ⅱ functional response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence and stabilit...In this paper, we are concerned with a predator-prey model with Holling type Ⅱ functional response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence and stability of the positive equilibrium for the system without diffusion. The explicit dependent condition of the existence of the positive equilibrium on the strength of Allee effect is determined. It has been shown that there exist two positive equilibria for some modulate strength of Allee effect. The influence of the strength of the Allee effect on the stability of the coexistence equilibrium corresponding to high predator biomass is completely investigated and the analytically critical values of Hopf bifurcations are theoretically determined.We have shown that there exists stability switches induced by Allee effect. Finally, the diffusion-driven Turing instability, which can not occur for the original system without Allee effect in predator, is explored, and it has been shown that there exists diffusion-driven Turing instability for the case when predator spread slower than prey because of the existence of Allee effect in predator.展开更多
This paper proposes a diffusive predator-prey model with Allee effect,time delay and anti-predator behavior.First,the existence and stability of all equilibria are analyzed and the conditions for the appearance of the...This paper proposes a diffusive predator-prey model with Allee effect,time delay and anti-predator behavior.First,the existence and stability of all equilibria are analyzed and the conditions for the appearance of the Hopf bifurcation are studied.Using the normal form and center manifold theory,the formulas which can determine the direction,period and stability of Hopf bifurcation are obtained.Numerical simulations show that the Allee effect can determine the survival abundance of the prey and predator populations,and anti-predator behavior can greatly improve the stability of the coexisting equilibrium.展开更多
We propose and study a discrete host-parasitoid model of difference equations with a spatial host refuge where hosts in the refuge patch are free from parasitism but undergo a demographic strong Allee effect.If the gr...We propose and study a discrete host-parasitoid model of difference equations with a spatial host refuge where hosts in the refuge patch are free from parasitism but undergo a demographic strong Allee effect.If the growth rate of hosts in the non-refuge patch is less than one,a host Allee threshold is derived below which both populations become extinct.It is proven that both populations can persist indefinitely if the host growth rate in the non-refuge patch exceeds one and the maximum reproductive number of parasitoids is greater than one.Numerical simulations reveal that the host refuge can either stabilize or destabilize the host-parasitoid interactions,depending on other model parameters.A large number of parasitoid turnover from a parasitized host may be detrimental to the parasitoids due to Allee effects in the hosts within the refuge patch.Moreover,it is demonstrated numerically that if the host growth rate is not small,the population level of parasitoids may suddenly drop to a small value as some parameters are varied.展开更多
In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive ini...In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive initial value.Then,under certain conditions,this solution is proved to be stochastically ultimately bounded.Furthermore,by constructing a suitable Lyapunov function,we obtain sufficient conditions for the existence of stationary distribution with ergodicity.The conditions for the extinction of infected avian population are also analytically studied.These theoretical results are conformed by computational simulations.We numerically show that the environmental noise can bring different dynamical outcomes to the stochastic model.By scanning different noise intensities,we observe that large noise can cause extinction of infected avian population,which suggests the repression of noise on the spread of avian virus.展开更多
In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center man...In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.展开更多
In this paper, we study some predator-prey system with Allee effect for prey. In addition, we discuss the properties of equilibrium points and the existence and uniqueness of limit cycle.
In this paper, we present a stability analysis of a Lotka-Volterra commensal symbiosis model subject to Allee effect on the unaffected population which occurs at low population density. By analyzing the Jacobian matri...In this paper, we present a stability analysis of a Lotka-Volterra commensal symbiosis model subject to Allee effect on the unaffected population which occurs at low population density. By analyzing the Jacobian matrix about the positive equilibrium, we show that the positive equilibrium is locally asymptotically stable. By applying the differential inequality theory, we show that the system is permanent, consequently, the boundary equilibria of the system is unstable. Finally, by using the Dulac criterion, we show that the positive equilibrium is globally stable. Although Allee effect has no influence on the final densities of the predator and prey species, numeric simulations show that the system subject to an Allee effect takes much longer time to reach its stable steady-state solution, in this sense that Allee effect has unstable effect on the system, however, such an effect is controllable. Such an finding is greatly different to that of the predator-prey model.展开更多
In this paper, we study a stochastic predator-prey model with Beddington-DeAngelis functional response and Allee effect, and show that there is a unique global positive solution to the system with the positive initial...In this paper, we study a stochastic predator-prey model with Beddington-DeAngelis functional response and Allee effect, and show that there is a unique global positive solution to the system with the positive initial value. Sufficient conditions for global asymptotic stability are established. Some simulation figures are introduced to support the analytical findings.展开更多
The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee ...The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee effect, harvesting and hydra effect is proposed and studied. Model with strong Allee effect results from incorporating mate limitation in the Beverton-Holt model. We show that these simple models exhibit some interesting (and sometimes unexpected) phenomena such as the hydra effect, sudden collapses and essential extinction. Along with this, harvesting is a socio-economie issue to continue any system generation after generation. Different dynamical behaviors for these situations have been illustrated numerically also. The biological implications of our analytical and numerical findings are discussed critically.展开更多
A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model int...A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.展开更多
In this paper, we investigate the dynamics of a diffusive predator prey model with Holling-II functional response and the additive Allee effect in prey. We show the local and global asymptotical stability of the posit...In this paper, we investigate the dynamics of a diffusive predator prey model with Holling-II functional response and the additive Allee effect in prey. We show the local and global asymptotical stability of the positive equilibrium, and give the conditions of the existence of the Hopf bifurcation. By carrying out global qualitative and bifurcation analysis, it is shown that the weak and strong Allee effects in prey can induce different dynamical behavior in the predator-prey model. Furthermore, we use some numerical simulations to illustrate the dynamics of the model. The results may be helpful for controlling and managing the predator-prey system.展开更多
This paper concerns with a Markov-switching predator-prey model with Allee effect for preys.The conditions under which extinction of predator and prey populations occur have been established.Sufficient conditions are ...This paper concerns with a Markov-switching predator-prey model with Allee effect for preys.The conditions under which extinction of predator and prey populations occur have been established.Sufficient conditions are also given for persistence and global attractivity in mean.In addition,stability in the distribution of the system under con-sideration is derived under some assumptions.Finally,numerical simulations are carried out to illustrate theoretical results.展开更多
文摘Since the last century, various predator-prey systems have garnered widespread attention. In particular, the predator-prey systems have sparked significant interest among applied mathematicians and ecologists. From the perspectives of both mathematics and biology, a predator-prey system with the Allee effect and featuring the Bazykin functional response has been established. For this model, analyses have been conducted on its boundedness, the properties of its solutions, the existence of equilibrium points, as well as its local stability and Hopf bifurcations.
基金supported by the Gansu Science and Technology Fund (20JR5RA512)the Research Fund for Humanities and Social Sciences of the Ministry of Education (20XJAZH006)+2 种基金the Fundamental Research Funds for the Central Universities (31920220066)the Gansu Provincial Education Department:Outstanding Postgraduate Innovation Star Project (2023CXZX-196)the Leading Talents Project of State Ethnic Affairs Commission of China and the Innovation Team of Intelligent Computing and Dynamical System Analysis and Application of Northwest Minzu University。
文摘Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey dynamics affected by both delays and the Allee effect. We analyze the consequences of delays in different feedback mechanisms. The existence of a Hopf bifurcation is studied, and we calculate the value of the delay that leads to the Hopf bifurcation. Furthermore, applying the normal form theory and a center manifold theorem, we consider the direction and stability of the Hopf bifurcation. Finally, we present numerical experiments that validate our theoretical analysis. Interestingly, depending on the chosen delay mechanism, we find that delays are not necessarily destabilizing. The Allee effect generally increases the stability of the equilibrium, and when the Allee effect involves a delay term, the stabilization effect is more pronounced.
文摘In this paper, an algae-fish harvested model with Allee effect was established to further explore the dynamic evolution mechanism under the influence of key factors. Mathematical theoretical work not only investigated the existence and stability of all possible equilibrium points, but also probed into the occurrence of transcritical and Hopf bifurcation. The numerical simulation works verified the effectiveness of the theoretical derivation results and displayed rich bifurcation dynamical behaviors, which showed that Allee effect and harvest have played a vital role in the dynamic relationship between algae and fish. In summary, it was expected that these research results would be beneficial for promoting the study of bifurcation dynamics in aquatic ecosystems.
基金supported by the National Natural Science Foundation of China (No.10671049)the US-NSF grants (No.DMS-0314736)
文摘In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Allee effect and is inhomogeneous. We use variational methods to prove that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate conditions. We also prove some nonexistence results.
文摘In this paper, based on the dynamic relationship between algae and protozoa, an aquatic ecological model with Allee effect was established to investigate how some ecological environment factors affect coexistence mode of algae and protozoa. Mathematical derivation works mainly gave some key conditions to ensure the existence and stability of all possible equilibrium points, and to induce the occurrence of transcritical bifurcation and Hopf bifurcation. The numerical simulation works mainly revealed ecological relationship change characteristics of algae and protozoa with the help of bifurcation dynamics evolution process. Furthermore, it was also worth emphasizing that Allee effect had a strong influence on the dynamic relationship between algae and protozoa. In a word, it was hoped that the research results could provide some theoretical support for algal bloom control, and also be conducive to the rapid development of aquatic ecological models.
文摘The aim of this paper is to investigate the dynamic behaviors of fractional-order logistic model with Allee effects in Caputo-Fabrizio sense.First of all,we apply the two-step Adams-Bashforth scheme to discretize the fractional-order logistic differential equation and obtain the two-dimensional discrete system.The parametric conditions for local asymptotic stability of equilibrium points are obtained by Schur-Chon criterion.Moreover,we discuss the existence and direction for Neimark-Sacker bifurcations with the help of center manifold theorem and bifurcation theory.Numerical simulations are provided to illustrate theoretical discussion.It is observed that Allee effect plays an important role in stability analysis.Strong Allee effect in population enhances the stability of the coexisting steady state.In additional,the effect of fractional-order derivative on dynamic behavior of the system is also investigated.
文摘In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species according to their availability.So,prey switching of predators mainly helps to increase the overall growth rate of a predator species.In this work,we have proposed a two prey-one predator system where the predator population adopts switching behavior between two prey species at the time of consumption.Both the prey population exhibit a strong Allee effect and the predator population is considered to be a generalist one.The proposed system is biologically well-defined as the system variables are positive and do not increase abruptly with time.The local stability analysis reveals that all the predator-free equilibria are saddle points whereas the prey-free equilibrium is always stable.The intrinsic growth rates of prey,the strong Allee parameters,and the prey refuge parameters are chosen to be the controlling parameters here.The numerical simulation reveals that in absence of one prey,the other prey refuge parameter can change the system dynamics by forming a stable or unstable limit cycle.Moreover,a situation of bi-stability,tri-stability,or even multi-stability of equilibrium points occurs in this system.As in presence of the switching effect,the predator chooses prey according to their abundance,so,increasing refuge in one prey population decreases the count of the second prey population.It is also observed that the count of predator population reaches a comparatively higher value even if they get one prey population at its fullest quantity and only a portion of other prey species.So,in the scarcity of one prey species,switching to the other prey is beneficial for the growth of the predator population.
文摘In this work,we study a predator-prey model of Gause type,in which the prey growth rate is subject to an Allee effect and the action of the predator over the prey is determined by a generalized hyperbolic-type functional response,which is neither differentiable nor locally Lipschitz at the predator axis.This kind of functional response is an extension of the so-called square root functional response,used to model systems in which the prey have a strong herd structure.We study the behavior of the solutions in the first quadrant and the existence of limit cycles.We prove that,for a wide choice of parameters,the solutions arrive at the predator axis in finite time.We also characterize the existence of an equilibrium point and,when it exists,we provide necessary and sufficient conditions for it to be a center-type equilibrium.In fact,we show that the set of parameters that yield a center-type equilibrium,is the graph of a function with an open domain.We also prove that any center-type equilibrium is stable and it always possesses a supercritical Hopf bifurcation.In particular,we guarantee the existence of a unique limit cycle,for small perturbations of the system.
基金the National Natural Science Foundation of China (No.1197114312071105)Zhejiang Provincial Natural Science Foundation of China (No.LZ23A010001)。
文摘In this paper, we are concerned with a predator-prey model with Holling type Ⅱ functional response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence and stability of the positive equilibrium for the system without diffusion. The explicit dependent condition of the existence of the positive equilibrium on the strength of Allee effect is determined. It has been shown that there exist two positive equilibria for some modulate strength of Allee effect. The influence of the strength of the Allee effect on the stability of the coexistence equilibrium corresponding to high predator biomass is completely investigated and the analytically critical values of Hopf bifurcations are theoretically determined.We have shown that there exists stability switches induced by Allee effect. Finally, the diffusion-driven Turing instability, which can not occur for the original system without Allee effect in predator, is explored, and it has been shown that there exists diffusion-driven Turing instability for the case when predator spread slower than prey because of the existence of Allee effect in predator.
基金This work is jointly supported by the National traditional Medicine Clinical Research Base Business Construction Special Topics(JDZX2015299)the Fundamental Research Funds for the Central University FRF-BR-16-019A.
文摘This paper proposes a diffusive predator-prey model with Allee effect,time delay and anti-predator behavior.First,the existence and stability of all equilibria are analyzed and the conditions for the appearance of the Hopf bifurcation are studied.Using the normal form and center manifold theory,the formulas which can determine the direction,period and stability of Hopf bifurcation are obtained.Numerical simulations show that the Allee effect can determine the survival abundance of the prey and predator populations,and anti-predator behavior can greatly improve the stability of the coexisting equilibrium.
文摘We propose and study a discrete host-parasitoid model of difference equations with a spatial host refuge where hosts in the refuge patch are free from parasitism but undergo a demographic strong Allee effect.If the growth rate of hosts in the non-refuge patch is less than one,a host Allee threshold is derived below which both populations become extinct.It is proven that both populations can persist indefinitely if the host growth rate in the non-refuge patch exceeds one and the maximum reproductive number of parasitoids is greater than one.Numerical simulations reveal that the host refuge can either stabilize or destabilize the host-parasitoid interactions,depending on other model parameters.A large number of parasitoid turnover from a parasitized host may be detrimental to the parasitoids due to Allee effects in the hosts within the refuge patch.Moreover,it is demonstrated numerically that if the host growth rate is not small,the population level of parasitoids may suddenly drop to a small value as some parameters are varied.
基金This study is supported by the National Key Research and Development Program of China(2018YFA0801103)the National Natural Science Foundation of China(Grant No.12071330 to Ling Yang,Grant No.11701405 to Jie Yan).
文摘In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive initial value.Then,under certain conditions,this solution is proved to be stochastically ultimately bounded.Furthermore,by constructing a suitable Lyapunov function,we obtain sufficient conditions for the existence of stationary distribution with ergodicity.The conditions for the extinction of infected avian population are also analytically studied.These theoretical results are conformed by computational simulations.We numerically show that the environmental noise can bring different dynamical outcomes to the stochastic model.By scanning different noise intensities,we observe that large noise can cause extinction of infected avian population,which suggests the repression of noise on the spread of avian virus.
基金Supported by the National Natural Science Foundation of China (No. 11071066)
文摘In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.
基金the Foundation of Education Department of Fujian Province (JAO5204)the Foundation of Science and Technology Department of Fujian Province(2005K027)
文摘In this paper, we study some predator-prey system with Allee effect for prey. In addition, we discuss the properties of equilibrium points and the existence and uniqueness of limit cycle.
基金supported by the National Natural Science Foundation of China under Grant(11601085)the Natural Science Foundation of Fujian Province(2017J01400)
文摘In this paper, we present a stability analysis of a Lotka-Volterra commensal symbiosis model subject to Allee effect on the unaffected population which occurs at low population density. By analyzing the Jacobian matrix about the positive equilibrium, we show that the positive equilibrium is locally asymptotically stable. By applying the differential inequality theory, we show that the system is permanent, consequently, the boundary equilibria of the system is unstable. Finally, by using the Dulac criterion, we show that the positive equilibrium is globally stable. Although Allee effect has no influence on the final densities of the predator and prey species, numeric simulations show that the system subject to an Allee effect takes much longer time to reach its stable steady-state solution, in this sense that Allee effect has unstable effect on the system, however, such an effect is controllable. Such an finding is greatly different to that of the predator-prey model.
基金Acknowledgments The authors thank the editor and referees for their valuable comments and suggestions. This work is supported by the National Basic Research Program of China (2010CB732501) and the National Natural Science Foundation of China (61273015), the NSFC Tianyuan Foundation (Grant No. 11226256) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13A010010), Zhejiang Provincial Natural Science Foundation of China LQ13A010023).
文摘In this paper, we study a stochastic predator-prey model with Beddington-DeAngelis functional response and Allee effect, and show that there is a unique global positive solution to the system with the positive initial value. Sufficient conditions for global asymptotic stability are established. Some simulation figures are introduced to support the analytical findings.
文摘The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee effect, harvesting and hydra effect is proposed and studied. Model with strong Allee effect results from incorporating mate limitation in the Beverton-Holt model. We show that these simple models exhibit some interesting (and sometimes unexpected) phenomena such as the hydra effect, sudden collapses and essential extinction. Along with this, harvesting is a socio-economie issue to continue any system generation after generation. Different dynamical behaviors for these situations have been illustrated numerically also. The biological implications of our analytical and numerical findings are discussed critically.
基金This work was supported by National Science Foundation of China 61273008 and 61203001, Doctor Startup Fund of Liaoning Province (20131026), Fundamental Research Funds for the Central University (N140504005) and China Scholarship Council. The authors gratefully thank referees for their valuable suggestions.
文摘A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.
文摘In this paper, we investigate the dynamics of a diffusive predator prey model with Holling-II functional response and the additive Allee effect in prey. We show the local and global asymptotical stability of the positive equilibrium, and give the conditions of the existence of the Hopf bifurcation. By carrying out global qualitative and bifurcation analysis, it is shown that the weak and strong Allee effects in prey can induce different dynamical behavior in the predator-prey model. Furthermore, we use some numerical simulations to illustrate the dynamics of the model. The results may be helpful for controlling and managing the predator-prey system.
基金National Science Foundation of China(11771104)Pro-gram for Chang Jiang Scholars and Innovative Research Team in University(IRT-16R16)the Innovation Research for the postgraduates of Guangzhou University under Grant No.2018GDJC-DO2.
文摘This paper concerns with a Markov-switching predator-prey model with Allee effect for preys.The conditions under which extinction of predator and prey populations occur have been established.Sufficient conditions are also given for persistence and global attractivity in mean.In addition,stability in the distribution of the system under con-sideration is derived under some assumptions.Finally,numerical simulations are carried out to illustrate theoretical results.