期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Alpha-NMF的AD样本分类及特异性基因选择方法
1
作者 卢晓丽 孔薇 《电子设计工程》 2012年第3期10-13,16,共5页
由于基因表达谱数据的高噪声、高维性、高冗余以及数据分布不均匀等特点使得在分析过程中仍然有很多挑战性问题。基于该目的,将一种无监督学习方法--非负矩阵分解方法,应用到基因表达谱数据中,挖掘出与AD相关的信息基因。然而标准NMF算... 由于基因表达谱数据的高噪声、高维性、高冗余以及数据分布不均匀等特点使得在分析过程中仍然有很多挑战性问题。基于该目的,将一种无监督学习方法--非负矩阵分解方法,应用到基因表达谱数据中,挖掘出与AD相关的信息基因。然而标准NMF算法其效率较低,并且在基因表达数据的应用有效性低。为了适应该领域的需求,采用了Alpha-NMF算法。该算法能够有效的克服标准NMF算法的缺陷,获得较好的实验结果。多次运行Alpha-NMF算法,选取分类准确率和稳定性最优的实验结果,对其集合基因设定一阈值,筛选出集合基因中大于该阈值的信息基因。最后通过基因功能分类以及生物功能结构图来验证所提炼出的特异性基因的有用性和可靠性。 展开更多
关键词 无监督学习 阿尔茨海默病 非负矩阵分解(NMF) 基因表达谱数据 alpha-nmf
下载PDF
基于Alpha散度的NMF人脸识别方法
2
作者 吕伟 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期133-136,共4页
传统的人脸识别方法对图像质量要求较高,对含有噪声或复杂背景等真实世界的图像识别率较低,从而限制了人脸识别的应用.基于Alpha散度的NMF分解方法用于人脸识别,用Alpha散度作为距离度量标准,得到对应的NMF分解表达式,通过表达式中参数... 传统的人脸识别方法对图像质量要求较高,对含有噪声或复杂背景等真实世界的图像识别率较低,从而限制了人脸识别的应用.基于Alpha散度的NMF分解方法用于人脸识别,用Alpha散度作为距离度量标准,得到对应的NMF分解表达式,通过表达式中参数的取值可以衍生出多种分解迭代表达式,在每步迭代过程中计算差异度,进而确定下一步的最优参数,这样能保证分解收敛于全局最优,提高人脸识别的精度. 展开更多
关键词 NMF Alpha散度 人脸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部