期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elevational patterns of warming effects on plant community and topsoil properties: focus on subalpine meadows ecosystem
1
作者 HAO Aihua LUO Zhengming CHEN Xiaojiang 《Journal of Mountain Science》 SCIE CSCD 2024年第1期146-159,共14页
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient... Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity. 展开更多
关键词 Warming effect Plant diversity pattern Community structure change Elevation gradient alpine meadow ecosystem Mount Wutai
下载PDF
Impact of Cloud on Net Ecosystem CO_(2) Exchange of Alpine Meadow in Tibetan Plateau
2
作者 Fan Yuzhi Zhang Xianzhou +1 位作者 Shi Peili Wu Jianshuang 《Chinese Journal of Population,Resources and Environment》 2010年第4期69-75,共7页
Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes a... Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes and meteorological data obtained,the relationships among the CO_(2) fluxes,the cloud amount,and the meteorological factors in alpine meadow ecosystem were explored and analyzed.Some conclusions can be drawn from the discussion with previous researches as following:(1)the cloud amount can affect the net ecosystem CO_(2) exchange(NEE)of alpine meadow on Tibetan Plateau;(2)the soil temperature sensitive to the cloud amount,is a major environmental controlling factor for NEE,and closely relates to the maximum of NEE.In the moming period with large cloud amount,the NEE reaches its maximum when the clearness index ranges from 0.5 to 0.7;yet in the afternoon it comes to the maximum with the index from 0.2 to 0.35.The span of soil temperature covers from 12 to 15℃as the NEE at its highest;(3)the scatterplots between NEE and photosynthetic available radiation(PAR)was a significant inverse triangle in the clear day,two different kinds of concave curves in the cloudy day,and strongly convergent rectangular hyperbola in the overcast day.These differences were controlled by the changes of light radiation and soil temperature. 展开更多
关键词 net ecosystem CO_(2)exchange cloud amount clearness index alpine meadow ecosystem Tibetan Plateau
下载PDF
Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China 被引量:15
3
作者 Man Hou XU Fei PENG +4 位作者 Quan Gang YOU Jian GUO Xia Fei TIAN Min LIU Xian XUE 《Journal of Arid Land》 SCIE CSCD 2015年第2期189-204,共16页
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and... Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon. 展开更多
关键词 simulated warming OVERGRAZING soil property plant property alpine meadow ecosystem Qinghai-Tibetan Plateau
下载PDF
Influence of short-term experimental warming on heat-waterprocesses of the active layer in a swamp meadow ecosystemof the Qinghai-Tibet Plateau 被引量:1
4
作者 GuangSheng Liu GenXu Wang 《Research in Cold and Arid Regions》 CSCD 2016年第2期125-134,共10页
Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic ch... Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic characteristics of changes in the water and heat dynamics in response to experimental warming in a typical alpine swamp meadow ecosystem. Data sets under open top chambers(OTC) and the control manipulations were collected over a complete year. The results show that annual(2008) air temperatures of OTC-1 and OTC-2 were 6.7 °C and 3.5 °C warmer than the control. Rising temperature promotes plant growth and development. The freeze-thaw and isothermal days of OTCs appeared more frequently than the control, owing to comparably higher water and better vegetation conditions. OTCs soil moisture decreased with the decrease of soil depth; however, there was an obviously middle dry aquifer of the control, which is familiar in QTP. Moreover, experimental warming led to an increase in topsoil water content due to poorly drained swamp meadow ecosystem with higher organic matter content and thicker root horizons. The results of this study will have some contributions to alpine cold ecosystem water-heat process and water cycle under climate change. 展开更多
关键词 experimental warming open top chamber Qinghai-Tibet Plateau soil moisture soil temperature alpine swamp meadow ecosystem
下载PDF
Modelling of Energy Flow,Rotational Grazing and Potential Productivity in an Alpine Meadow Grazing Ecosystem 被引量:1
5
作者 黄大明 Christiane Willeke-Wetstein Joerg Steinbach 《Tsinghua Science and Technology》 EI CAS 2000年第4期446-456,共11页
An eight-compartment model of the energy dynamics of an alpine meadow-sheep grazing ecosystem was proposed based on SHIYOMI's system approach. The compartments were the above-ground plant portion, the underground... An eight-compartment model of the energy dynamics of an alpine meadow-sheep grazing ecosystem was proposed based on SHIYOMI's system approach. The compartments were the above-ground plant portion, the underground live portion including roots, the underground dead portion including roots, the above-ground litter Ⅰ (degradable portion), the above-ground litter Ⅱ (undegradable portion), the sheep intake, the sheep liveweight, and the faeces. Energy flows between the eight compartments were described by eight simultaneous differential equations. All parameters in the model were determined from paddock experiments. The model was designed to provide a practical method for estimating the effects of the number of rotational grazing subplots, grazing period, and grazing pressure on the performance of grazing systems for perennial alpine meadow pasture. The model provides at least 28 different attributes for characterizing the performance of the grazing system. Analyses of 270 simulated rotational grazing systems of summer-autumn meadow pasture (grazing from 1st June to 30 October each year) provided an inference base to support two recommendations concerning management variables. First, with a three-paddock, 29-day grazing period and 30.14kJ·m -2 ·day -1 grazing pressure scheme, the system has the highest total grazing intake, 4250.44kJ·m -2 , during the grazing season. Secondly, with a three-paddock, 7-day grazing period and 28.89kJ·m -2 ·day -1 grazing pressure scheme, the accumulated graze is 4073.34kJ·m -2 . The potential productivity of the alpine meadow under grazing is defined in this paper as the maximal dry biomass of herbage grazed by the grazing animals over the whole growing season. It has been analysed by applying optimal control theory to the model. The productivity is regarded as the objective function to be maximized through optimization of the time course of the grazing pressure, the control variable. The results show that: (1) under constant grazing pressure, the optimal grazing pressure is f 16 =25.90kJ·m -2 ·day -1 (f 46 =f 56 =0) with the highest accumulated intake of J (1) =3268.17kJ·m -2 ; and (2) the optimal grazing pressure is f 16 =25.94kJ·m -2 ·day -1 (f 46 ≠0, f 56 ≠0) with the maxial accumulated intake J (145) =3500.39kJ·m -2 . Under variable grazing pressure, the dynamics of optimal grazing pressure is shown in Fig.6(a) and Eqs. (9)(11), while the potential productivity (the highest accumulated intake) is J (145) =8749.01kJ·m -2 , 2.5 times the constant grazing pressure.[ 展开更多
关键词 alpine meadow ecosystem compartment model energy flow modelling potential productivity rotation graz?
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部