期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
How do GPM and TRMM precipitation products perform in alpine regions?A case study in northwestern China's Qilian Mountains 被引量:1
1
作者 SUN Weijun CHEN Rensheng +3 位作者 WANG Lei WANG Yingshan HAN Chuntan HUAI Baojuan 《Journal of Geographical Sciences》 SCIE CSCD 2022年第5期913-931,共19页
Satellite technologies provide valuable areal precipitation datasets in alpine mountains.However,coarse resolution still limits the use of satellite precipitation datasets in hydrological and meteorological research.W... Satellite technologies provide valuable areal precipitation datasets in alpine mountains.However,coarse resolution still limits the use of satellite precipitation datasets in hydrological and meteorological research.We evaluated different time scales and precipitation magnitudes of Tropical Rainfall Measurement Mission 3B43 V7(TRMM)and Global Precipitation Measurement(GPM)products for alpine regions using ground precipitation datasets from January 2015 to June 2019 obtained from 25 national meteorological stations and 11 sets of T-200B weighing precipitation gauges in the Qilian Mountains.The results indicated that GPM outperformed TRMM at all temporal scales at an elevation<3500 m with a higher probability of detection(POD),false alarm ratio(FAR),and frequency bias index(FBI)and performed best at 3000 m;TRMM performed better than GPM at an elevation>3500 m,with the best performance at 4000 m.GPM and TRMM had the best estimation accuracy in areas with monthly precipitation of 30 mm and 40 mm,respectively.Both TRMM and GPM products underestimated mid to large daily precipitation and overestimated light daily precipitation averaging<2 mm/d.This research not only emphasizes the superiority of GPM/TRMM in different regions but also indicates the limitations of precipitation algorithms. 展开更多
关键词 accuracy assessment GPM TRMM alpine regions PRECIPITATION
原文传递
Response of soil respiration to environmental and photosynthetic factors in different subalpine forest-cover types in a loess alpine hilly region 被引量:1
2
作者 Yuanhang Li Sha Lin +3 位作者 Qi Chen Xinyao Ma Shuaijun Wang Kangning He 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期653-665,共13页
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil... Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies. 展开更多
关键词 Loess alpine hilly region Soil respiration Environmental factor Photosynthesis factor Q_(10) Two-factor model Three-factor model
下载PDF
Sand-fixing characteristics of Carex brunnescens and its application with straw checkerboard technique in restoration of degraded alpine meadows 被引量:4
3
作者 KANG Jianjun ZHAO Ming +4 位作者 TAN Yanrong ZHU li BING Danhui ZHANG Yangdong TONG Shengli 《Journal of Arid Land》 SCIE CSCD 2017年第5期651-665,共15页
Carex brunnescens(Pers.), a typical clonal species, is considered to be the only herb found to date that can develop on sand dunes in Maqu alpine region of northwestern China. However, the characteristics that C. br... Carex brunnescens(Pers.), a typical clonal species, is considered to be the only herb found to date that can develop on sand dunes in Maqu alpine region of northwestern China. However, the characteristics that C. brunnescens resists to harsh alpine environment have not been documented. In this study, we conducted a field investigation to determine the morphological, reproductive, and sand-fixing characteristics of C. brunnescens. Concomitantly, we transplanted the belowground rhizomes of C. brunnescens to sand dunes and compared the abilities to restore degraded alpine meadows among sand dunes that had no further treatment(SD+N), sand dunes that had straw checkerboard technique but no transplanted rhizomes of C. brunnescens(SD+SCT), and sand dunes that had both SCT and transplanted rhizomes of C. brunnescens(SD+SCT+P). We found that belowground vertical rhizomes and horizontal rhizomes(including branching rhizomes and main rhizomes) of C. brunnescens were highly developed and that population reproduction was dominated by horizontal rhizomes. C. brunnescens exhibited a significant sand-fixation effect under following conditions: population density was 145–156 ramets/m^2, vegetation cover was 31.2%–39.3%, total length of belowground rhizomes was 11,223 cm/m^2, total length of belowground first-order roots was 9161–10,524 cm/m^2, fresh weight of aboveground part was 198.5–212.6 g/m^2, and fresh weight of belowground part was 578.8–612.4 g/m^2. It should be particularly noted that SD+SCT+P treatment(sand dunes that had both straw checkerboard technique and transplanted rhizomes of C. brunnescens) was the best and SD+N(sand dunes that had no further treatment) was the worst in terms of following biotic indicators: total number of reproductive ramets, total number of belowground rhizomes, and fresh weight of aboveground and belowground parts of C. brunnescens, contents of soil organic carbon, available nitrogen, microbial biomass carbon, and microbial biomass nitrogen. It implies that applying SCT in sand dunes and transplanting belowground rhizomes to sand dunes with SCT could improve both soil fertility and growth of C. brunnescens. These results suggest that the SCT-promoted high reproductive abilities of belowground rhizomes of C. brunnescens can successfully facilitate the establishment of ramets and can thus be an effective strategy to restore degraded vegetation in Maqu alpine region of northwestern China. 展开更多
关键词 Carex brunnescens(Pers perennial herb sand-fixing straw checkerboard technique Maqu alpine region
下载PDF
Reconstruction of surface deformation characteristics in alpine canyons under shadow conditions
4
作者 GU Zhen-kui YAO Xin 《Journal of Mountain Science》 SCIE CSCD 2022年第11期3105-3117,共13页
Monitoring deformation in high undulating mountainous environments is critical for surface process research and disaster prevention studies. Although observations based on interferometric Synthetic Aperture Radar(InSA... Monitoring deformation in high undulating mountainous environments is critical for surface process research and disaster prevention studies. Although observations based on interferometric Synthetic Aperture Radar(InSAR) are an excellent tool for monitoring deformation, the shadow phenomena can limit its application. Based on a series of geomorphic parameters and limited InSAR observation data, surface deformations were reconstructed in areas with missing observations by constructing a random forest model to compensate for the shadow phenomenon at the grid-scale. The findings suggest that this method can be used to rebuild landscape variation characteristics in places where observation data is lacking. The dominant slope direction in the observation area corresponded to a more significant correlation between the reconstructed topography deformation characteristics and the observation. In addition, when building this model, consideration was given to the geomorphic parameter selection, elevation variation, hypsometric integral value, slope form, lithology, slope variation,and aspect variation;these parameters can significantly affect the surface deformation, which is closely related to their spatial autocorrelation. These findings are significant for eliminating the shadow phenomenon, which often occurs in In SAR observations taken over alpine canyon regions. The terrain and lithology of the underlying surface should be considered when reconstructing the surface deformation characteristics of the shadow region by using satellite observation data. 展开更多
关键词 alpine canyon region Surface deformation SHADOW INSAR Geomorphic parameter
下载PDF
Study on the Landcover Changes Based on GIS and RS Technologies: A Case Study of the Sanjiangyuan National Nature Reserve in the Hinterland Tibet Plateau, China
5
作者 Renjie Zhao Qingsong Du 《Journal of Geoscience and Environment Protection》 2022年第1期140-150,共11页
<div style="text-align:justify;"> With global warming and increased human activity, more and more ground surface areas have been affected, which leads to the creation of many problems. To understand th... <div style="text-align:justify;"> With global warming and increased human activity, more and more ground surface areas have been affected, which leads to the creation of many problems. To understand the ecological environment changes in a typical alpine region, information on landcovers changes in the study area from 2000 to 2020 was obtained by combining remote sensing, geographic information system, and traditional statistical analysis for the Sanjiangyuan National Nature Reserve on the Qinghai-Tibet Plateau, China. The results show that the changes of surface cover in Sanjiangyuan National Nature Reserve are relatively concentrated, mainly distributed in the sections of south, northwest, central, and northeast, with the area of the changed regions and the unchanged regions being 31,127.45 km<sup>2</sup> and 271,941.37 km<sup>2</sup>, respectively. The transformation between the various types of ground landcover is mainly characterized by a shift from other types to grassland and from grassland to bare land. And the regions of change are mostly concentrated between 3500 - 4600 m in elevation. </div> 展开更多
关键词 Sanjiangyuan National Nature Reserve (SNNR) alpine Region Qinghai-Tibet Plateau (QTP) Landcover Change GIS and RS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部