期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
1
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
High accuracy compact finite difference methods and their applications
2
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
下载PDF
Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation
3
作者 Limei Li Da Xu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2014年第1期41-57,共17页
New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,f... New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,for the time stepping,new alternating direction implicit(ADI)method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered.The ADI Galerkin finite element method is proved to be convergent in time and in the L2 norm in space.The convergence order is O(k|ln k|+h^(r)),where k is the temporal grid size and h is spatial grid size in the x and y directions,respectively.Numerical results are presented to support our theoretical analysis. 展开更多
关键词 Fractional evolution equation alternating direction implicit method Galerkin finite element method backward Euler
原文传递
AN ADI GALERKIN METHOD WITH MOVING FINITE ELEMENT SPACES FOR A CLASS OF SECOND-ORDER HYPERBOLIC EQUATIONS
4
作者 孙同军 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期45-58,共14页
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
关键词 alternating direction implicit method moving finite element second order hyperbolic equations.
下载PDF
An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
5
作者 Mengya Su Zhihao Ren Zhiyue Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期739-776,共38页
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc... Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis. 展开更多
关键词 Viscous wave equation alternating direction implicit finite volume element method error estimates L2 norm
下载PDF
ADI Finite Element Method for 2D Nonlinear Time Fractional Reaction-Subdiffusion Equation
6
作者 Peng Zhu Shenglan Xie 《American Journal of Computational Mathematics》 2016年第4期336-356,共21页
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit metho... In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method. 展开更多
关键词 Nonlinear Fractional Differential Equation alternating direction implicit method Finite Element method Riemann-Liouville Fractional Derivative
下载PDF
Splitting Finite Difference Methods on Staggered Grids for the Three-Dimensional Time-Dependent Maxwell Equations 被引量:1
7
作者 Liping Gao Bo Zhang Dong Liang 《Communications in Computational Physics》 SCIE 2008年第7期405-432,共28页
In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consi... In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consists of only two stages for each time step.It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions.Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes. 展开更多
关键词 Splitting scheme alternating direction implicit method finite-difference time-domain method stability CONVERGENCE Maxwell’s equations perfectly conducting boundary
原文传递
Numerical Methods for Semilinear Fractional Diffusion Equations with Time Delay 被引量:1
8
作者 Shuiping Yang Yubin Liu +1 位作者 Hongyu Liu Chao Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期56-78,共23页
In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical signific... In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical significance.We develop a novel implicit alternating direction method that can effectively and efficiently tackle the RSFDEs in both two and three dimensions.The numerical method is proved to be uniquely solvable,stable and convergent with second order accuracy in both space and time.Numerical results are presented to verify the accuracy and efficiency of the proposed numerical scheme. 展开更多
关键词 Semilinear Riesz space fractional diffusion equations with time delay implicit alternating direction method stability and convergence
原文传递
Optimal error estimates and modified energy conservation identities of the ADI-FDTD scheme on staggered grids for 3D Maxwell's equations 被引量:4
9
作者 GAO LiPing ZHANG Bo 《Science China Mathematics》 SCIE 2013年第8期1705-1726,共22页
This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving... This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented. 展开更多
关键词 alternating direction implicit method finite-difference time-domain method Maxwell's equations optimal error estimate SUPERCONVERGENCE unconditional stability energy conservation divergence preservingproperty
原文传递
EFFICIENT NUMERICAL ALGORITHMS FOR THREE-DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS 被引量:3
10
作者 Weihua Deng Minghua Chen 《Journal of Computational Mathematics》 SCIE CSCD 2014年第4期371-391,共21页
This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equatio... This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme. 展开更多
关键词 Fractional partial differential equations Numerical stability Locally one dimensional method Crank-Nicolson procedure alternating direction implicit method.
原文传递
A new three-dimensional terrain-following tidal model of free-surface flows
11
作者 Fuqiang LU 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第4期642-658,共17页
A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlin... A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region. 展开更多
关键词 three-dimensional numerical model alternating direction implicit method tidal flow orthogonal curvilinear coordinates terrain-following
原文传递
ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation
12
作者 Meng Li Chengming Huang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第3期112-134,共23页
In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element schem... In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element scheme is used for the discretization in the spatial direction,and the temporal component is discretized by a new alternating direction implicit(ADI)method.Next,we strictly prove that the numerical method is stable and convergent.Finally,to confirm our theoretical analysis,some numerical examples in 2D space are presented. 展开更多
关键词 Time and space fractional diffusion-wave equation alternating direction implicit method Galerkin FEM STABILITY CONVERGENCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部