Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ...Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.展开更多
Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. ...Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. Alternating least-squares (ALS) is one of the most popular numerical algorithms for solving it. While there have been lots of efforts for enhancing its efficiency, in general its convergence can not been guaranteed. In this paper, we cooperate the ALS and the trust-region technique from optimization field to generate a trust-region-based alternating least-squares (TRALS) method for CP. Under mild assumptions, we prove that the whole iterative sequence generated by TRALS converges to a stationary point of CP. This thus provides a reasonable way to alleviate the swamps, the notorious phenomena of ALS that slow down the speed of the algorithm. Moreover, the trust region itself, in contrast to the regularization alternating least-squares (RALS) method, provides a self-adaptive way in choosing the parameter, which is essential for the efficiency of the algorithm. Our theoretical result is thus stronger than that of RALS in [26], which only proved the cluster point of the iterative sequence generated by RALS is a stationary point. In order to accelerate the new algorithm, we adopt an extrapolation scheme. We apply our algorithm to the amino acid fluorescence data decomposition from chemometrics, BCM decomposition and rank-(Lr, Lr, 1) decomposition arising from signal processing, and compare it with ALS and RALS. The numerical results show that TRALS is superior to ALS and RALS, both from the number of iterations and CPU time perspectives.展开更多
In this paper, we have proposed a novel model called proximal support matrix machine (PSMM), which is mainly based on the models of proximal support vector machine (PSVM) and low rank support matrix machine (LRSMM). I...In this paper, we have proposed a novel model called proximal support matrix machine (PSMM), which is mainly based on the models of proximal support vector machine (PSVM) and low rank support matrix machine (LRSMM). In design, the PSMM model has comprehensively considered both the relationship between samples of the same class and the structure of rows or columns of matrix data. To a certain extent, our novel model can be regarded as a synthesis of the PSVM model and the LRSMM model. Since the PSMM model is an unconstrained convex problem in essence, we have established an alternating direction method of multipliers algorithm to deal with the proposed model. Finally, since a great deal of experiments on the minst digital database show that the PSMM classifier has a good ability to distinguish two digits with little difference, it encourages us to conduct more complex experiments on MIT face database, INRIA person database, the students face database and Japan female facial expression database. Meanwhile, the final experimental results show that PSMM performs better than PSVM, twin support vector machine, LRSMM and linear twin multiple rank support matrix machine in the demanding image classification tasks.展开更多
3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior deton...3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.展开更多
基金supported by Research Grant from the Kajima Foundation,JST CREST Grant No.JPMJCR1911,JapanJSPS KAKENHI(Nos.17K06633,21K04351).
文摘Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.
文摘Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. Alternating least-squares (ALS) is one of the most popular numerical algorithms for solving it. While there have been lots of efforts for enhancing its efficiency, in general its convergence can not been guaranteed. In this paper, we cooperate the ALS and the trust-region technique from optimization field to generate a trust-region-based alternating least-squares (TRALS) method for CP. Under mild assumptions, we prove that the whole iterative sequence generated by TRALS converges to a stationary point of CP. This thus provides a reasonable way to alleviate the swamps, the notorious phenomena of ALS that slow down the speed of the algorithm. Moreover, the trust region itself, in contrast to the regularization alternating least-squares (RALS) method, provides a self-adaptive way in choosing the parameter, which is essential for the efficiency of the algorithm. Our theoretical result is thus stronger than that of RALS in [26], which only proved the cluster point of the iterative sequence generated by RALS is a stationary point. In order to accelerate the new algorithm, we adopt an extrapolation scheme. We apply our algorithm to the amino acid fluorescence data decomposition from chemometrics, BCM decomposition and rank-(Lr, Lr, 1) decomposition arising from signal processing, and compare it with ALS and RALS. The numerical results show that TRALS is superior to ALS and RALS, both from the number of iterations and CPU time perspectives.
文摘In this paper, we have proposed a novel model called proximal support matrix machine (PSMM), which is mainly based on the models of proximal support vector machine (PSVM) and low rank support matrix machine (LRSMM). In design, the PSMM model has comprehensively considered both the relationship between samples of the same class and the structure of rows or columns of matrix data. To a certain extent, our novel model can be regarded as a synthesis of the PSVM model and the LRSMM model. Since the PSMM model is an unconstrained convex problem in essence, we have established an alternating direction method of multipliers algorithm to deal with the proposed model. Finally, since a great deal of experiments on the minst digital database show that the PSMM classifier has a good ability to distinguish two digits with little difference, it encourages us to conduct more complex experiments on MIT face database, INRIA person database, the students face database and Japan female facial expression database. Meanwhile, the final experimental results show that PSMM performs better than PSVM, twin support vector machine, LRSMM and linear twin multiple rank support matrix machine in the demanding image classification tasks.
基金Supported by the National Natural Science Foundation of China(No.21175106) and the Specialized Research Fund for the Doctoral Program of Higher Education, China(No.20126101110019).
文摘3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.